← 返回
储能系统技术 储能系统 ★ 5.0

吸附剂强化与水热废弃物转化集成用于负碳排放燃料生产的技术经济评估

Integration of sorbent enhanced in hydrothermal waste transformation for negative CO2 emission fuel production: Techno-economic assessments

语言:

中文摘要

摘要 所有主要情景均强调,为实现2050年碳中和目标,必须从大气中大规模移除二氧化碳,其中生物能源结合碳捕集与封存(BECCS)在负碳组合中发挥关键作用。然而,最主要的生物源废弃物原料含水量极高,导致其资源化利用面临挑战,因为传统热化学方法需要高能耗的干燥过程。本研究引入了一种新型工艺配置的技术经济评估,该工艺整合了水热碳化(HTC)与吸附强化气化/重整(SEG/SER),旨在将湿生物废弃物转化为负碳氢气、富氢合成气或水热炭,并结合钙循环技术实现二氧化碳的原位捕集。CaO对CO2的放热捕集反应为吸热的气化与重整过程提供了所需的热能,从而最大化能量利用效率和氢气产率。研究表明,常压气化/重整有利于氢气生产,具有最高的能量效率(高达80.4%)和成本效益(平准化氢气成本LCOH为1.65 €/kg-H2)。这一优势得益于高碳捕集率(最高达100%),所产生的碳信用额可显著抵消部分氢气生产成本。相比之下,高压气化/重整虽然氢气产率较低,但有利于生成富含甲烷的合成气。由此进一步探讨了以生产部分脱碳的高品质合成气为目标的工艺配置,所得合成气热值超过天然气和厌氧消化沼气,全局效率最高可达84%,单位生产成本分别为38.47和57.9 €/MWh。

English Abstract

Abstract All major scenarios highlight the need for significant CO 2 removal from the atmosphere to achieve the 2050 carbon neutrality targets, with key contribution of Biogenic Energy with CO 2 Capture and Storage (BECCS) in the Carbon Negative mix. However, the largest biogenic waste feedstocks are highly moisturized, making it challenging to valorize due to the associated energy-intensive drying process required by conventional thermochemical methods. This study introduces the techno-economic of novel process configurations integrating hydrothermal carbonization (HTC) and sorption-enhanced gasification/reforming (SEG/SER). The goal is to convert Wet Biogenic Waste into carbon-negative hydrogen, hydrogen-rich syngas, or hydrochar with integrated CO 2 capture using calcium looping technology. The exothermic CO 2 capture by CaO provides the needed thermal energy to the endothermic gasification and reforming processes, thus maximizing energy efficiency and hydrogen yield. Atmospheric gasification/reforming was found to favor hydrogen production at the highest energy efficiency (up to 80.4%) and cost-effectiveness (levelized cost of hydrogen LCOH, 1.65 €/kg-H 2 ). This is facilitated by the high carbon capture rates (up to 100%) that generate carbon credits with a substantial contribution in offsetting a considerable portion of the produced hydrogen costs. High-pressure gasification/reforming resulted in poor hydrogen yields in favor of substantial CH 4 -rich syngas. This triggered investigating configurations targeting the production of partly decarbonized superior syngas, resulting in heating values exceeding natural gas and anaerobic digestion biogas , achieving global efficiencies of up to 84% and production costs of 38.47 and 57.9 €/MWh.
S

SunView 深度解读

该BECCS负碳技术路线对阳光电源储能系统具有战略启示意义。湿生物质制氢过程的能量效率优化(80.4%)与我司ST系列储能变流器的高效能量管理理念契合。其碳捕集与热化学过程的能量耦合思路,可启发PowerTitan储能系统在工业园区的多能互补场景设计。特别是氢能-储能协同方面,该研究的经济性分析(LCOH 1.65欧元/kg)为我司拓展制氢侧储能配套、开发氢储耦合解决方案提供参考,助力构建零碳能源生态系统。