← 返回
储能系统技术 储能系统 ★ 5.0

使用改进Harris鹰优化协调设计电力系统稳定器和虚拟惯量控制以改善电力系统稳定性

Coordinated Design of Power System Stabilizer and Virtual Inertia Control Using Modified Harris Hawk Optimization for Improving Power System Stability

作者 Mohamad Almas Prakasa · Imam Robandi · Alberto Borghetti · Muhammad Ruswandi Djalal · Waseda Himawari
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电力系统稳定性 可再生能源集成 PSS - VIC协调设计 HHO - MSS算法 稳定性提升
语言:

中文摘要

当前时代电力系统稳定性因可再生能源整合趋势面临典型问题,该趋势使电力系统控制器间协调对维持广泛运行行为下的稳定性至关重要。本文提出电力系统稳定器和虚拟惯量控制协调设计改善整合可再生能源的电力系统稳定性。所提方法使用改进的Harris鹰优化与记忆保存策略,通过各种仿真找到电力系统稳定器-虚拟惯量控制全局参数的平衡点确保可扩展性。电力系统稳定器专注于从柴油机、火电和水轮机等传统发电机侧提升稳定性,改进虚拟惯量控制设计提出通过虚拟惯量仿真从可再生能源侧提升稳定性,整合风力发电机、太阳能光伏和储能系统。电力系统稳定器-虚拟惯量控制全局参数通过计算电网规范许可的最优阻尼比并验证各种稳定性标准确定。结果显示改进Harris鹰优化比其他算法精度提升1.44%-9.28%且一致性提升34.63%-53.94%。通过实现9.94%-9.96%最优阻尼比,在38个涉及突然负载变化、变化惯量和不同可再生能源水平的仿真中,总体电力系统稳定性改善包括:频率最低点改善41.17%-70.89%、功率角偏差改善25.9%-67.38%、稳定时间减少84.83%-85.26%、平均误差减少51.57%-89.73%。所提协调电力系统稳定器-虚拟惯量控制设计提供出色可扩展性并能有效改善广泛运行条件下的电力系统稳定性。

English Abstract

In the current era, power system stability faces typical problems due to the Renewable Energy Sources (RES) integration trend. This trend makes the coordination between power system controllers crucial to maintain stability across a wide-range of operating behaviors. To address this problem, this paper proposes the coordinated design of Power System Stabilizer and Virtual Inertia Control (PSS-VIC) to improve the stability of the power system integrated with RES. The proposed method uses the modified version of Harris Hawk Optimization with Memory Saving Strategy (HHO-MSS) to find the equilibrium point of global parameters of PSS-VIC through various simulations to ensure scalability. In this proposed method, PSS is focused on increasing the power system stability from the traditional generator sides with diesel engines, thermal, and hydro turbines. Meanwhile, the modified VIC design is proposed to increase the power system stability from the RES sides using virtual inertia emulation with the integration of wind generators, solar photovoltaic units, and energy storage systems. The global parameters of PSS-VIC are determined by calculating the optimal damping ratio which is permitted by grid codes alongside various stability criteria validation. Based on the obtained results, HHO-MSS is 1.44% to 9.28% more accurate and 34.63% to 53.94% more consistent than Electric Eel Foraging Optimization (EEFO), and Puma Optimizer (PO), Evolutionary Mating Algorithm (EMA). With the optimal damping ratios of 9.94% to 9.96% achieved by HHO-MSS, the overall power system stability improvements, including both local and interarea responses across 38 simulations involving sudden load changes, varying inertia, and different RES levels, are as follows: 41.17% to 70.89% frequency nadir improvement, 25.9% to 67.38% power angle deviation improvement, 84.83% to 85.26% settling time reduction, and 51.57% to 89.73% average error reduction calculated with performance indices. The proposed coordinated PSS-VIC design offers excellent scalability and can effectively improve power system stability across a wide-range of operating conditions.
S

SunView 深度解读

该虚拟惯量控制技术是阳光电源构网型储能系统的核心能力。阳光ST系列储能变流器支持GFM构网模式,该研究的PSS-VIC协调设计可进一步提升系统稳定性。阳光可将该优化算法集成到EMS能量管理系统,实现储能系统虚拟惯量的智能调节,增强电网惯量支撑能力,改善频率稳定性41%-71%,支持高比例新能源并网,提升电网安全性和可靠性。