← 返回
互补场效应管中间层接触架构对比分析
A Comparative Analysis of Middle-of-Line Contact Architectures for Complementary FETs
| 作者 | Seung Kyu Kim · Johyeon Kim · Gunhee Choi · Kee-Won Kwon · Jongwook Jeon |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 单片互补场效应晶体管逆变器 中线接触架构 电阻电容分段分析 交流性能 混合方案 |
语言:
中文摘要
本文研究应用于单片互补FET逆变器的各种中间层接触架构,并进行对比分析评估各自优势和局限。对每种方案进行电阻和电容分段分析,评估直流性能以及功率性能特性和增强策略。中间VIA方案电容最低但由于增加接触区域和高掺杂硅的高电阻,交流性能劣于传统结构。环绕接触WAC结构和通过增加顶置NMOS接触深度形成的顶金属源漏TMS结构共同点是通过扩大接触面积和缩短高阻功率VIA长度大幅降低外部电阻。尽管与更高电容权衡,WAC和TMS的交流性能在相同动态功耗下分别提升9.0%和6.5%。还进行敏感性分析阐明MOL电阻和电容对交流性能的影响。仅应用于漏侧时性能增益小于1%,突显最小化源侧电阻的重要性。此外,电阻和电容分段分析显示,虽然WAC提供最佳逆变器性能,TMS为NMOS提供更高直流性能和更低电容。采用TMS用于NMOS、WAC用于PMOS的混合方法结合进一步优化降低漏侧电容,将导致11.1%速度提升或22.7%动态功耗降低。
English Abstract
In this paper, we have investigated various middle-of-line contact architectures applied to monolithic complementary FET inverters and have performed a comparative analysis to assess their respective advantages and limitations. For each scheme, we carried out segmentation analysis of resistance and capacitance, and evaluated the DC performance as well as the power-performance characteristics alongside enhancement strategies. The middle VIA scheme features the lowest capacitance but exhibits inferior AC performance to the conventional structure due to the high resistance of the increased contact region parts and the highly doped silicon. The wrap-around-contact (WAC) structure, and the top metal source/drain (TMS) structure which is formed by increasing the contact depth of the top-placed NMOS, have in common that the external resistance is greatly reduced by enlarging the contact area and shortening the length of the high-resistance power VIA. Despite the trade-off with higher capacitance, AC performances of WAC and TMS are improved by 9.0% and 6.5%, respectively, for the same dynamic power. A sensitivity analysis was also performed to clarify the impact of MOL resistance and capacitance on AC performance. The performance gain when applied only to the drain side is less than 1%, highlighting the importance of minimizing the resistance on the source side. In addition, the segmentation analysis of resistance and capacitance shows that while WAC offers the best inverter performance, TMS provides higher DC performance and lower capacitance for NMOS. A hybrid approach using TMS for NMOS and WAC for PMOS combined with further optimization to reduce capacitance on the drain side, would result in an 11.1% speed improvement or a 22.7% reduction in dynamic power consumption.
S
SunView 深度解读
该接触架构技术对阳光电源功率器件芯片设计具有参考价值。阳光SiC和GaN功率器件追求更低导通电阻和开关损耗,接触架构优化是关键。该研究的环绕接触和顶金属源漏结构可启发阳光功率芯片设计,降低器件导通电阻,提升开关速度。在高压大电流应用中,该研究强调的源侧电阻最小化对阳光功率器件性能提升至关重要。该混合接触方法可应用于阳光储能变流器和光伏逆变器的功率模块设计,优化NMOS和PMOS器件性能,降低功耗22.7%,提升效率。结合阳光三电平拓扑和并联技术,该接触架构优化可实现更高功率密度和更低系统成本。