← 返回
智慧健康系统中面向安全、效率和功率优化的专家混合联邦学习和信任管理
An Expert Hybrid Federated Learning and Trust Management for Security, Efficiency, and Power Optimization in Smart Health Systems
| 作者 | Sohrab Khan · Nayab Imtiaz · Arnab Kumar Biswas · Zeeshan Bin Siddique · Qaisar Ali Khan |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 智能健康系统 安全隐私 混合联邦SVM模型 信任管理模型 异常检测 |
语言:
中文摘要
智慧医疗系统中大量健康设备互联共享患者数据,面临严重的安全和隐私问题。本文提出新型混合联邦SVM和信任管理模型,通过协作性、诚实性和社区信任参数计算信任度。该模型异常检测总体准确率达95%,线性核、RBF核和多项式核准确率分别为95%、93%和95%,为健康系统提供安全和隐私保护。该方法轻量化,减少52.5%计算量,促进不必要能耗节约和计算开销降低,提升智慧健康基础设施安全性。
English Abstract
Health care systems play an important role in smart city infrastructure and seem very beneficial to citizens. The large numbers of health devices are connected with each other and share the patient’s data, AI doctors analyze the data and give recommendations to patients. The challenges associated with the integration of the health system bring significant security and privacy issues to the forefront, especially with respect to sensitive patient information. Ensuring the security and privacy of the health system is necessary. To overcome these challenges, the author proposed a novel and practical model consisting of a hybrid federated SVM and trust management model. First, the system computes the trust, using the parameters of cooperativeness, honesty, and community trust. The proposed model achieves an overall accuracy of 95%, linear kernel accuracy of 95%, RBF kernel accuracy of 93%, and polynomial kernel accuracy of 95% against anomaly detection and provides security and privacy to the health system. The proposed approach is lightweight and reduces 52.5% computational. Our design also promotes savings on unnecessary energy consumption and computational overhead. As a result, our novel strategy opens the door to enhancing the security of smart health infrastructures, ensuring optimal performance and economical use of resources.
S
SunView 深度解读
该联邦学习和边缘计算技术对阳光电源物联网设备安全管理有借鉴意义。阳光iSolarCloud平台连接海量光伏储能设备,需要高效安全的数据处理机制。联邦学习可实现分布式设备本地数据处理和模型训练,降低云端数据传输和计算压力。信任管理机制可增强阳光设备间通信安全性。该轻量化方案可应用于阳光边缘控制器,在保证数据安全前提下降低系统能耗和通信开销。