← 返回
具身智能赋能定制化制造:架构、机遇和挑战
Embodied Intelligence Empowering Customized Manufacturing: Architecture, Opportunities, and Challenges
| 作者 | Jinbiao Tan · Jianhua Shi · Ligang Wu · Baotong Chen · Hao Tang · Chunhua Zhang |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 定制化制造 具身智能 循环具身智能制造架构 生产要素融合 生产决策优化 |
语言:
中文摘要
随着人工智能AI技术在定制化制造CM中的持续进步,当前将感知与执行分离的智能模型缺乏适应性和通用性。强调实时环境交互和反馈的新兴技术具身智能EI,有望实现以感知-认知-执行-反馈为特征的集成智能制造系统,增强制造物联网IoMT、设备管理和资源调度等多因素系统的性能和智能。然而CM中当前AI系统仍然孤立,缺乏多源感知和反馈的环境交互方法,阻碍自主演化智能系统发展。为解决CM中多样化生产要素间环境交互瓶颈,本文提出循环具身智能制造CEIM架构,旨在实现异构生产要素信息融合。目标是增强环境感知并建立自主系统演化机制,从而优化生产决策。通过集成传感器数据和AI模型输出,利用大语言模型LLM的高级推理能力,CEIM促进包括IoMT、智能设备和制造资源的多生产要素语义融合,实现CM中EI应用部署。通过定制礼品盒包装平台案例研究验证CEIM实施。
English Abstract
With the continued advancement of Artificial Intelligence (AI) technology in Customized Manufacturing (CM), the current intelligence model, which separates ‘perception’ from ‘execution,’ lacks adaptability and generalizability. Embodied Intelligence (EI), an emerging technology emphasizing real-time environmental interaction and feedback, is expected to enable integrated intelligent manufacturing systems characterized by ‘perception-cognition-execution-feedback,’ enhancing the performance and intelligence of multifactor systems like the Internet of Manufacturing Things (IoMT), equipment management, and resource scheduling. However, current AI systems in CM remain isolated and lack methods for environmental interaction with multi-source perception and feedback, hindering the development of autonomous, evolving intelligent systems. To address the environmental interaction bottlenecks among diverse production elements in CM, this paper proposes a Circular Embodied Intelligence Manufacturing (CEIM) architecture aimed at enabling the fusion of heterogeneous production-element information. The objective is to enhance environmental perception and establish autonomous system evolution mechanisms, thereby optimizing production decision-making. By integrating sensor data and AI model outputs, and leveraging the advanced reasoning capabilities of large language models (LLMs), CEIM facilitates the semantic fusion of multiple production elements—including IoMT, intelligent devices, and manufacturing resources—to enable the deployment of EI applications in CM. The implementation of CEIM is illustrated and validated through a case study on a customized gift box packaging platform. Finally, this paper discusses the opportunities and challenges of applying EI in manufacturing and aims to provide insights into the future development of EI-oriented manufacturing systems.
S
SunView 深度解读
该具身智能制造技术对阳光电源智能制造和数字化转型有前瞻性启发意义。虽然阳光主要聚焦能源设备制造,但CEIM架构的感知-认知-执行-反馈闭环理念可应用于阳光智能工厂建设。多源传感器融合和AI决策优化技术可提升阳光生产线的自动化和智能化水平。大语言模型LLM的推理能力对阳光开发智能生产调度和质量控制系统有借鉴意义。该研究展示的自主演化系统思路,可启发阳光探索自适应柔性制造,提升定制化产品生产能力和市场响应速度。