← 返回
综合能源领域独立和并网可再生能源系统多目标优化设计的受控非支配排序遗传算法
Controlled Non-Dominated Sorting Genetic Algorithms for Multi-Objective Optimal Design of Standalone and Grid-Connected Renewable Energy Systems in Integrated Energy Sectors
| 作者 | Hamza El Hafdaoui · Ahmed Khallaayoun · Salah Al-Majeed |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源系统 非支配排序遗传算法 控制型算法 摩洛哥案例 成本效益 |
语言:
中文摘要
非支配排序遗传算法因其在优化可再生能源系统中的鲁棒性和灵活性而受认可,通过处理多目标和生成多样Pareto最优解超越传统方法。然而随机初始种群和变异导致的低效率可影响处理时间和错误率。本研究引入受控非支配排序遗传算法,通过受控种群初始化和变异机制增强优化。与传统非支配排序遗传算法相比,受控版本显示卓越性能,在高能源需求下实现2.4%错误降低、117%更低任务违规率和157%更快处理时间。摩洛哥Ifrane旅游村具有显著季节能源需求的案例研究说明算法应用。结果显示考虑潜在电网出口机会的独立和并网系统最优场景。独立配置年产271MWh剩余能量,15MWh未满足需求,需要125kW功率变换器。实际场景将较低额定功率与电网进口同步,净现值成本降低18%,平准化成本降低24%。假设场景显示如果出口价格匹配进口成本则可能产生负净现值和平准化成本的收入。
English Abstract
Non-dominated sorting genetic algorithms are recognized for their robustness and flexibility in optimizing renewable energy systems, surpassing traditional methods by handling multiple objectives and generating diverse Pareto-optimal solutions. However, inefficiencies due to random initial populations and mutations can impact processing times and error rates. This study introduces the controlled non-dominated sorting genetic algorithm, which enhances optimization with controlled population initialization and mutation mechanisms. Compared to the conventional non-dominated sorting genetic algorithms, the controlled version shows superior performance, achieving a 2.4% error reduction, a 117% lower task violation rate, and a 157% faster processing time at high energy demands. A case study in Ifrane, Morocco—a tourism village with significant seasonal energy demand—illustrates the application of the algorithm. Results show optimal scenarios for standalone and grid-connected systems, considering potential grid export opportunities. Standalone configurations generate 271 MWh surplus energy annually, with 15 MWh unmet demand, requiring 125 kW power converters. Real scenarios synchronize lower rated power with grid imports, reducing net present costs by 18% and levelized costs by 24%. Hypothetical scenarios demonstrate potential revenue generation with negative net present and levelized costs if export prices match import costs. Grid-connected and thermal energy storage systems are more cost-effective despite higher emissions.
S
SunView 深度解读
该多目标优化算法对阳光电源可再生能源系统设计有重要应用价值。阳光光储系统配置需要平衡多个目标如成本、可靠性和环保性。受控遗传算法的性能优势可应用于阳光iSolarCloud平台的系统优化工具。独立和并网双场景分析与阳光微电网和并网储能业务一致。净现值和平准化成本优化对阳光项目经济性评估至关重要。该研究验证的显著性能改进,可支撑阳光开发更高效的多目标优化算法,提升光储系统设计水平和市场竞争力。