← 返回
储能系统技术 储能系统 ★ 5.0

电力电子变压器中直流电容状态监测的可迁移数据驱动方法

A Transferrable Data-Driven Method for Condition Monitoring of DC Capacitor in Power Electronic Transformer

作者 Xiaohui Li · Liqun He · Zhongkui Zhu · Cheng Wang · Jianying Zheng · Bowen Zhou
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2024年12月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 直流电容 电力电子变压器 数据驱动方法 电容 等效串联电阻
语言:

中文摘要

直流电容DCC是电力电子变压器PET中的关键组件,维持PET正常运行。有必要监测DCC的健康状况。DCC健康状况变化导致电容C和等效串联电阻ESR值变化。现有DCC数据驱动状态监测方法仅能在PET特定工况下准确工作,但在可变工况下失效。此外PET通常需要不间断运行,无法测量C和ESR值,导致DCC电压数据无标签。为解决上述问题,提出一种新型可迁移数据驱动方法。该方法包含三部分:源域双尺度卷积自编码器SDCAE、对抗学习网络ALN和极限学习机ELM。首先通过SDCAE提取源域数据特征并用作目标域数据的先验分布。然后采用ALN最小化源域数据与目标域数据间的分布散度。之后通过源域数据的特征和标签训练ELM并用于估计目标域数据的C和ESR。通过三相AC-DC PET的仿真和实验数据验证了所提可迁移数据驱动方法。

English Abstract

DC capacitors (DCCs) are the key components in power electronic transformers (PETs), which maintain the PETs operating normally. It is necessary to monitor the healthy condition of DCCs. Changes in the healthy condition of DCCs result in varied values of capacitance (C) and equivalent series resistance (ESR). The existing data-driven condition monitoring methods for DCCs can only work accurately for a particular working condition of PETs but fail to work with variable working conditions. Moreover, PETs are generally required to operate uninterruptedly, and it is impossible to measure the values of C and ESR, resulting in the data of DCCs’ voltage without labels. To address the above problems, a novel transferrable data-driven method is proposed. There are three parts in this method: the source-domain double-scale convolutional autoencoder (SDCAE), adversarial learning network (ALN), and extreme learning machine (ELM). First, the feature of source-domain data is extracted by the SDCAE and employed as the prior distribution of the target-domain data. Then, ALN is employed to minimize the distribution divergence between the source-domain data and target-domain data. After that, ELM is trained by feature and label of source-domain data and employed to estimate the C and ESR of target-domain data. Finally, the proposed transferrable data-driven method is verified by the simulation and experimental data of a three-phase AC-DC PET.
S

SunView 深度解读

该PET直流电容可迁移监测研究对阳光电源储能变流器健康管理有重要参考价值。可迁移数据驱动方法应对可变工况和无标签数据的能力与阳光ST系列储能变流器和SG系列光伏逆变器在实际应用中面临的复杂运行条件高度契合。SDCAE、ALN和ELM组合的深度学习架构可应用于阳光iSolarCloud平台的直流母线电容健康监测和预测性维护功能。该方法在不间断运行条件下估计电容C和ESR的能力为阳光PowerTitan储能系统的在线监测提供了技术路径。该研究对阳光电源提高关键元件可靠性、降低维护成本和延长系统寿命有实用价值。