← 返回
考虑传感器误差的DC-DC降压变换器数字孪生参数辨识
Parameter Identification for DC-DC Buck Converter Digital Twin Considering Sensor Errors
| 作者 | Parsa Behzad Nazif · Mariam Saeed · Saad Ahmad · Juan Manuel Guerrero · Aitor Rodríguez Mendez · Guillermo Carlos Ozaita Araico |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年4月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | DC-DC变换器 工商业光伏 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 数字孪生 参数识别 传感器误差 参数拟合 直流降压转换器 |
语言:
中文摘要
数字孪生技术在电力电子变换器中展现出广阔应用前景,其性能高度依赖参数辨识的准确性。用于数字孪生成立与运行的测量数据精度直接影响参数估计效果。超高精度传感器或频繁校准在实验室可行,但在多数工业场景中难以实现。本文分析了传感器增益与偏置误差对参数辨识及数字孪生性能的影响,表明将传感器误差项作为未知参数纳入辨识算法可显著提升关键参数估计精度。对比采用内点法(IPM)与粒子群优化(PSO)进行参数拟合,结果表明IPM更具优势。所提方法在DC-DC降压变换器上进行了仿真与实验验证。
English Abstract
The digital twin is becoming a promising technology for power electronic converters. Digital twin performance strongly relies on parameter identification. The accuracy of the measurements used for the commissioning and operation of the digital twin will be key for parameter identification. The use of ultrahigh-accuracy sensors and/or frequent calibration can be feasible in laboratory environments but unfeasible for most industrial environments. This article analyzes the effect of sensor errors on parameter identification and eventually on digital twin performance. It will be shown that including sensor gains and offsets as unknowns in the parameter identification algorithm significantly improves the accuracy of the estimates of critical parameters. The interior point method (IPM) and particle swarm optimization (PSO) will be considered for parameter fitting, the first being found to be superior. The proposed methodology is applied to a dc/dc buck converter. The simulation and experimental results are provided for validation.
S
SunView 深度解读
该数字孪生参数辨识技术对阳光电源DC-DC变换器产品具有重要应用价值。在ST储能变流器的DC-DC级联环节、车载OBC的降压变换模块以及充电桩DC-DC功率转换单元中,传感器误差普遍存在且难以频繁校准。本文提出的将传感器增益与偏置误差纳入参数辨识算法的方法,可显著提升电感、电容、ESR等关键参数估计精度,为数字孪生模型提供可靠基础。采用内点法优化的参数拟合方案可集成至iSolarCloud平台,实现储能系统与充电设备的精准建模、状态监测和预测性维护,降低现场传感器校准成本,提升工业场景下智能运维的实用性与经济性。