← 返回

基于滑模的模型预测控制增强动态感应电力传输系统鲁棒性和输出性能

Sliding-Mode-Based Model Predictive Control for Enhancing Robustness and Output Performance in Dynamic Inductive Power Transfer Systems

语言:

中文摘要

在自动导引车AGV的动态感应电力传输DIPT系统中,AGV运动会显著影响耦合系数降低输出性能。传统控制方法虽能应对该挑战,但常因对电路参数变化敏感而表现出弱鲁棒性,且需要试错过程调整系数增加设计复杂性和难度。提出一种专为DIPT系统定制的基于滑模的模型预测控制SM-MPC方法以增强鲁棒性和输出性能。SM-MPC采用预测模型迫使控制对象收敛到滑模面,利用快速动态响应特性缓解AGV运动引起的扰动。引入极点配置方法直接获取最优滑模系数,消除迭代调整需求并简化设计过程。给出DIPT系统模型、SM-MPC设计方法、稳定性分析和滑模系数设计。仿真和实验结果验证所提SM-MPC在稳定DIPT系统输出性能方面的有效性,与现有控制方法相比对参数变化和AGV运动扰动具有改善的鲁棒性。

English Abstract

In dynamic inductive power transfer (DIPT) systems for automated guided vehicles (AGVs), the movement of the AGV can significantly impact the coupling coefficient, degrading the output performance. Conventional control methods, while capable of addressing this challenge, often exhibit weak robustness due to their sensitivity to circuit parameter variations and require a trial-and-error process for tuning coefficients, thus increasing design complexity and difficulty. This article proposes a sliding-mode-based model predictive control (SM-MPC) approach tailored for DIPT systems to enhance robustness and output performance. The SM-MPC employs a predictive model to force the control object to converge to a sliding surface, leveraging fast dynamic response characteristics to mitigate AGV movement-induced disturbances. A pole-placement method is introduced to directly acquire the optimal sliding coefficient, eliminating iterative tuning requirements and simplifying the design process. Herein, the DIPT system model is presented, followed by the SM-MPC design methodology, stability analysis, and sliding coefficient design. Finally, simulations and experimental results validate the proposed SM-MPC’s effectiveness in stabilizing the output performance of DIPT systems, demonstrating improved robustness against parameter variations and disturbances caused by AGV movement compared to existing control methods.
S

SunView 深度解读

该DIPT系统滑模MPC研究对阳光电源无线充电技术应用拓展有重要参考价值。SM-MPC应对耦合系数变化和提升鲁棒性的能力可应用于阳光新能源汽车OBC无线充电和AGV移动充电场景。极点配置直接获取最优系数消除试错调整的方法可简化阳光iSolarCloud平台的无线充电控制算法开发。快速动态响应缓解运动扰动的特性符合阳光电源在动态充电应用中的性能需求。该研究对阳光电源拓展工业AGV、移动机器人等动态无线充电市场有前瞻性价值。