← 返回

基于三相解耦SVPWM的六相游标永磁电机开相故障自然容错控制以降低转矩脉动

Three-Phase Decoupling SVPWM based Natural Fault-Tolerant Control of Six-Phase Vernier PM Motor with Open-Phase Fault for Reducing Torque Ripple

语言:

中文摘要

多相游标永磁电机(VPMM)因高转矩密度和优良的容错能力受到广泛关注。为充分释放其容错潜力,并避免故障诊断误差、延迟及重构复杂性,本文提出一种基于三相解耦空间矢量脉宽调制(TPD-SVPWM)的自然容错控制(NFTC)策略,实现对称六相VPMM在开相故障下平滑过渡至容错运行。通过TPD-SVPWM技术,将六相电压源逆变器的电压矢量分解为两个三相系统,降低矢量数量,并借助SVPWM减小输出电压矢量与参考矢量的偏差,相较模型预测电流控制(MPCC)更有效抑制转矩脉动。结果表明,所提方法显著改善稳态与动态性能,转矩脉动由22%降至10%。

English Abstract

The multiphase vernier permanent magnet motor (VPMM) has attracted increasing attention due to its high torque density and superior fault-tolerant capability. In order to make full use of the fault-tolerant capability and avoid fault diagnosis errors or delays and the complexity of reconfiguration process, a three-phase decoupling space vector pulse width modulation (TPD-SVPWM) based natural fault-tolerant control (NFTC) is proposed to realize a smooth transition from healthy to fault-tolerant operation under open-phase faults for a symmetrical six-phase VPMM. Through the TPD-SVPWM technique, the voltage vectors of the six-phase voltage source inverter (VSI) are readily decomposed into ones of two three-phase VSIs to reduce the number of voltage vectors. Importantly, compared with the existing model predictive current control (MPCC) based NFTC, the deviation between actual output voltage vector and desired reference voltage vector is decreased due to adopting the SVPWM technique instead of the virtual vector selection of finite control set MPC, thereby conducive to the torque ripple suppression. The results show that the proposed TPD-SVPWM-based NFTC can provide satisfactory steady-state and dynamic performance, and make the torque ripple reduce from 22% to 10% compared with the MPCC-based NFTC.
S

SunView 深度解读

该六相电机容错控制技术对阳光电源储能与电驱产品具有重要应用价值。TPD-SVPWM解耦控制策略可直接应用于ST系列储能变流器的多相并联拓扑,在单相故障时无需复杂重构即可平滑切换,提升系统可靠性。自然容错控制理念可借鉴至PowerTitan大型储能系统的模块化冗余设计,避免故障诊断延迟导致的系统停机。转矩脉动抑制技术(从22%降至10%)对新能源汽车电机驱动系统意义重大,可改善车载OBC和电驱系统的动态响应。三相解耦SVPWM与现有MPPT算法结合,有望优化SG逆变器在电网不平衡工况下的输出特性,提升iSolarCloud平台的预测性维护能力。