← 返回
通过生物质废弃物热解途径制备生物炭的技术经济前景分析
Mapping techno-economic prospects of biochar production through biomass waste pyrolysis pathway
| 作者 | Ikram Bahir · Mohamed Medhat Ibrahi · Gaut · Abdelghafour Zaabout |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 327 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A polygeneration biogenic-based waste plant producing biochar bio-oil and electricity. |
语言:
中文摘要
摘要 由生物源性废弃物残渣衍生而来的生物炭被认为是可持续性最高的资源之一,广泛应用于土壤质量改良、能量储存和氢气储存,同时也是一种极具前景的绿色替代燃料。本研究对慢速热解这一最广为人知的生物炭生产技术进行了标准化的技术经济评估,旨在解决该工艺在工业应用中的成本效益与盈利能力方面的不确定性。工艺流程在Aspen Plus® v12中实现,采用动力学RCSTR模型模拟热解反应器(该模型已通过现有实验结果验证),并集成了生物炭和生物油的收集系统。所产生的合成气被用于燃烧,以满足原料干燥和分解过程的热能需求,并通过集成的蒸汽动力循环进行发电。本研究探讨了停留时间与温度等关键设计参数对生物炭平准化成本(LCOB)、生物炭产率、组成成分、能量密度以及整体工厂能源效率等关键性能指标的影响。这两个设计参数同时影响工厂的资本支出(CAPEX,例如热解反应器、燃烧器及蒸汽动力循环的规模)和运营支出(OPEX,包括整体能源效率、发电量以及可外售的生物油产量),倾向于选择较短的停留时间和较低的操作温度。当热解条件为300 °C和10分钟时,获得最低的LCOB值8.23 €/MWh;而在500 °C和60分钟条件下,LCOB最高,达18.99 €/MWh。本研究通过实验设计方法整合评估结果,建立了LCOB关于关键工艺参数及副产品市场价格的预测关联模型。
English Abstract
Abstract Biochar derived from biogenic waste residue is regarded among the most sustainable resources in broad applications, including soil quality enhancement, energy storage, and hydrogen storage, but also as a promising green alternative fuel. This work completed a standardized techno-economic assessment study of slow pyrolysis , the most known process for biochar production, to address the uncertainties of this process’s cost-effectiveness and profitability for industrial deployment. Process schemes were implemented in Aspen Plus® v12, simulating the pyrolysis reactor using a kinetic RCSTR model (validated against existing experimental results) and integrating char and bio-oil collection. The produced syngas was combusted to fulfill heat requirements in feedstock drying and decomposition steps, in addition to electricity generation in an integrated steam power cycle. The study investigated the impact of key design parameters, such as residence time and temperature, on key performance indicators, such as the levelized cost of biochar (LCOB), biochar yield, composition, energy density, and overall plant energy efficiency. Those two design parameters affected both CAPEX (e.g., the size of the pyrolysis reactor, combustor, and steam power cycle) and OPEX (overall energy efficiency, generated electricity, and bio-oil for external sale) of the plant, favoring short residence time and low-temperature operating conditions. The lowest LCOB of 8.23 €/MWh was obtained for 300 °C and 10 min of pyrolysis, and the highest LCOB of 18.99 €/MWh was obtained for 500 °C and 60 min. The assessment outputs were compiled using the design of experiments, generating a predictive correlation of LCOB as a function of key process parameters and by-product market price.
S
SunView 深度解读
生物炭热解技术为阳光电源储能系统提供创新应用场景。研究显示生物炭可用于储能和储氢,其低平准化成本(8.23-18.99欧元/MWh)与PowerTitan等储能产品形成互补。热解过程的能量管理优化思路可借鉴于ST系列PCS的能量转换效率提升,副产物发电与储能系统结合可构建分布式能源解决方案。生物炭作为绿色燃料的特性,亦可拓展至充电站等场景的可持续能源供给,支撑iSolarCloud平台的碳足迹管理功能开发。