← 返回
储能系统技术 储能系统 ★ 5.0

电网连接型多能系统的整体优化:生物质与灵活储能的集成

Holistic optimization of grid-connected multi-energy systems: Biomass and flexible storage integration

语言:

中文摘要

摘要 本研究针对苏北地区多能系统(MES)容量及灵活储能优化中的关键挑战,重点探讨了生物质能、风能与光伏发电源的集成问题。该研究对于提升绿色可再生能源的高效与可持续利用具有重要意义,是应对能源危机和环境问题的关键途径。本研究采用了一种生物质与灵活储能(BMFS)策略,涵盖风力涡轮机、光伏发电机、生物质供电单元以及储能系统的集成。通过运用集合经验模态分解-共生生物搜索-径向基函数(EMD-SSA-RBF)优化算法,在多种负荷条件下对系统性能进行了仿真模拟,旨在实现电网供需之间的平衡。该算法结合了EMD在数据分解方面的优势、SSA在优化RBF神经网络参数上的能力,以及RBF在函数逼近方面高精度的特点,成为应对多能系统复杂优化挑战的强有力工具。主要研究结果包括气体增压燃气轮机(GBGT)持续提供525 kW的电力输出,在高峰时段输出比约为20%,对电网稳定性至关重要。系统的综合可持续性指数(CSI)显著提升,夏季提高了7.57%,冬季提高了21.96%。优化后的多能系统不仅降低了平准化度电成本(LCOE),还实现了更高的二氧化碳减排量,同时显著减少了年度支出,并提升了资本成本效率。本研究的创新之处在于其整体性的BMFS方法,该方法不仅优化了多能系统的配置,还通过战略性增强绿色能源资源来提升系统整体的可持续性。本研究为多能系统容量优化及灵活储能技术的发展奠定了理论基础,并提供了实践指导,对可持续能源管理具有重要的参考价值。

English Abstract

Abstract This study tackles the pivotal challenge of optimizing the capacity and flexible energy storage of Multi-Energy Systems (MES) in Northern Jiangsu, with a focus on integrating biomass, wind, and photovoltaic power sources. This research is vital for enhancing the efficient and sustainable use of green renewable energy, which is essential for addressing energy crises and environmental issues. This study adopted a Biomass and Flexible Storage (BMFS) strategy, which encompasses the integration of wind turbines, photovoltaic generators, biomass power supply units, and energy storage systems. Employing an Ensemble Empirical Mode Decomposition-Symbiotic Organisms Search-Radial Basis Function (EMD-SSA-RBF) optimization algorithm, the system’s performance was simulated under a variety of load conditions, aiming to achieve a balance between grid supply and demand. This algorithm combines the strengths of EMD for data decomposition, SSA for optimizing the parameters of the RBF neural network, and RBF for its high precision in function approximation, making it a robust choice for the complex optimization challenges presented by the multi-energy system. Key findings include the consistent supply of 525 kW from the Gas Boosted Gas Turbine (GBGT), with peak hour output ratios of about 20 %, crucial for grid stability. The Comprehensive Sustainability Index (CSI) of the system saw significant improvements, rising by 7.57 % in the summer and by 21.96 % in the winter. The optimized MES not only demonstrated a reduction in the Levelized Cost of Electricity (LCOE) but also achieved increased CO2 savings, along with a significant reduction in annual payments and improved capital cost efficiency. The novelty of this research lies in its holistic BMFS approach, which not only optimizes MES configurations but also enhances system sustainability through the strategic enhancement of green energy resources. This study lays a theoretical foundation and offers practical guidance for the optimization of MES capacity and the development of flexible energy storage technologies, providing invaluable insights into sustainable energy management.
S

SunView 深度解读

该多能源系统优化研究对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。研究中的EMD-SSA-RBF算法可启发iSolarCloud平台的预测性维护优化,提升储能系统在风光生物质混合场景下的调度精度。GBGT稳定供电策略可借鉴至VSG虚拟同步发电机控制技术,增强电网稳定性。研究验证的CSI提升21.96%和LCOE降低成果,为阳光电源多能互补ESS解决方案提供理论支撑,特别适用于苏北地区农林生物质资源丰富场景的储能系统配置优化。