← 返回
储能系统技术 储能系统 ★ 5.0

通过液态空气储能实现英国2050年净零碳能源系统

Achieving a net-zero-carbon energy system in the UK by 2050 with liquid air energy storage

作者 Ting Liang · Yongliang Li · Binjian Ni · Abdalqader Ahm · Yulong Ding
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 327 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 储能技术 可再生能源 液态空气储能 可扩展性 成本效益
语言:

中文摘要

摘要 不同的储能技术可为大规模整合间歇性和波动性可再生能源提供有前景的解决方案,其中液态空气储能(LAES)具有多项关键优势,包括高可扩展性、无地理限制以及提供多能矢量服务的能力。本研究旨在评估英国到2050年实现成本有效的净零碳能源转型路径。为此,开发了一种基于多区域混合整数线性规划的新型能源扩展框架,以突出LAES及其他储能技术在能源系统中的关键作用,并用于能源系统的最优设计与运行。通过情景分析和敏感性分析,揭示了不同路径的技术经济性能及四个关键结果。首先,研究表明,到2050年在英国实现净零碳电热耦合能源系统是可行的,其平准化度电成本为65~80 £/MWh,平准化热能成本为45~63 £/MWh。主要发电设施的扩展包括陆上风电(94.5 GW)和液态空气储能(384 GWh)在电力部门,以及空气源热泵(约80~90 GW)和短期热储能(330 GWh)在供热部门。尤为重要的是,研究从技术经济角度证实了LAES及其他储能技术在英国能源转型中的关键作用。具体而言,在不同情景下,仅需约10%~12%的储能投资即可使年度可再生能源弃电减少超过80%,并使系统年度总成本降低约15.1%~28%。在不同区域中,LAES与可再生能源之间的最优容量比约为16%~25%。最后一个显著发现表明,对于以风电为主导的情景(如英国),充电持续时间为8~10小时、放电持续时间为12~15小时的LAES系统,相比短时储能电池(约4/5小时),更具适用性。总体而言,所开发的能源扩展框架有助于统筹规划传统能源与储能技术,以更高效地吸纳可再生能源;所得出的研究成果可为政策制定者在制定实现碳减排目标相关政策方面提供有益的启示。

English Abstract

Abstract Different storage technologies can offer promising solutions for integrating large amounts of intermittent and variable renewables, in which the liquid air energy storage (LAES) has key advantages, including its high scalability, no geographical constraints, and multi-vector services. This work aims to assess the cost-effective net-zero energy transition pathways for the UK by 2050. A new multi-zone mixed-integer-linear-programming-based energy expansion framework, which can highlight the crucial roles of LAES and other energy storage, was developed to perform the optimal design and operation of energy systems. The scenario and sensitivity analyses revealed the techno-economic performances of different pathways and four key results. First, it showed that a net-zero-carbon power-heat-coupled energy system is feasible in the UK by 2050, with a levelized cost of electricity at 65 ∼ 80 £/MWh, and a levelized cost of heat energy at 45 ∼ 63 £/MWh. The major generators’ expansions are onshore wind power (94.5 GW) and LAES (384 GWh) in the power sector, and the air-source heat pump (∼80 ∼ 90 GW) and short-term heat storage (330 GWh) in the heat sector. Importantly, it demonstrated the crucial roles of LAES and other energy storage in the UK energy transition from a techno-economic view. Specifically, only ∼ 10–12 % of storage investment can reduce the annual renewable curtailments by more than 80 % and the system annual costs by ∼ 15.1 % − 28 % depending on different scenarios. The optimal capacity ratios of LAES and renewables are ∼ 16 % − 25 % in different zones. The last notable observation suggested that the LAESs with charge durations at 8 ∼ 10 h and discharge durations at 12 ∼ 15 h are more suitable for the wind-dominated case (like the UK) than short-duration batteries (∼4/5h). Overall, the developed energy expansion framework can facilitate the planning of conventional energy and storage technologies to absorb renewable energies, and the meaningful results can provide policymakers with enlightening views about developing policies relating to achieving carbon mitigation ambitions.
S

SunView 深度解读

该研究验证了长时储能在高比例可再生能源系统中的关键作用,对阳光电源PowerTitan等大型储能系统具有重要参考价值。研究表明最优储能配置比例为可再生能源容量的16-25%,充电8-10小时、放电12-15小时的长时储能更适配风电主导场景,这为ST系列PCS的功率时长配置提供了量化依据。10-12%的储能投资可减少80%弃电并降低15-28%系统成本,印证了阳光电源储能系统在电网侧调峰调频、提升新能源消纳方面的经济性。建议结合iSolarCloud平台开发多时间尺度优化算法,并探索储能与热泵耦合的综合能源解决方案。