← 返回
电动汽车驱动 ★ 4.0

液态金属实现的热-电耦合电流传输性能分析

Performance analysis of coupled thermal-electric current transmission by liquid metal

作者 Chuan-Ke Liu · Mao-Lin Li · Shun Ma · Xin-Yi Liu · Ling-Xiao Cao · Zhizhu He
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 327 卷
技术分类 电动汽车驱动
相关度评分 ★★★★ 4.0 / 5.0
关键词 A coupled thermal-electric current transmission strategy was introduced for EVs.
语言:

中文摘要

摘要 高功率直流快充(DC-HPC)有望推动电动汽车(EV)向高能效与低碳可持续方向发展,但在极端高温冲击下存在热失控风险。传统的冷却方法将电流传输与散热过程分离,在超大充电电流条件下难以实现高效的热管理与结构灵活性。本文提出一种基于液态金属(LM)的热-电耦合电流传输策略,构建了用于电动汽车超充的柔性协同供电线(FSPL),即使在超过1000 A的电流下仍可稳定工作。该液态金属基FSPL(LM-FSPL)兼具载流导通与主动冷却散热的协同功能,能够快速消除超高充电电流所产生的超高热流密度,从而促进DC-HPC系统的结构简化与可靠运行。实验结果表明,LM-FSPL在保持电气稳定性的同时,展现出显著的机械弹性与灵活可操作性,可实现50%的拉伸变形和720°的扭转变形。同时采用多物理场数值模拟方法,系统研究了不同传输策略下的电流-热-流体耦合机制。与铜基供电线相比,LM-FSPL通过均化电流分布、抑制局部热量积聚以及优化热-流通道,表现出更优异的传热与流体动力学性能,主动冷却能力提升了62.7%。此外,我们搭建了LM-FSPL实验测试平台,以探究系统在不同几何构型和充电电流条件下的适应性。实验结果显示,在1000 A充电电流下,LM-FSPL的最高温度仅为37.6 ℃。本研究所提出的热-电耦合电流传输策略为超高功率充电技术提供了新思路,有助于推动电动汽车的广泛普及。

English Abstract

Abstract High-power direct current fast charging (DC-HPC) is expected to drive electric vehicles (EVs) towards high-energy efficiency and low-carbon sustainability while suffering potential thermal runaway due to extreme-high heat shock. Conventional cooling methods that separate current transmission and heat dissipation struggle to achieve efficient thermal management and structural flexibility, particularly under ultra-high charging current. Herein, a liquid metal (LM)-enabled coupled thermal-electric current transmission strategy is introduced to establish the flexible synergetic power line (FSPL) for EV supercharging even for currents exceeding 1000 A. With the synergetic functions of current-carrying conduction and active-cooling dissipation, the LM-enabled FSPL (LM-FSPL) can rapidly eliminate the superhigh heat density generated by ultra-high charging current, promoting structural simplification and reliable operation of DC-HPC. Experiment results demonstrate that LM-FSPL presents remarkable mechanical elasticity and flexible maneuverability while maintaining electrical stability, achieving a tensile and torsion deformation of 50 % and 720°. The multiphysics numerical method is also employed to thoroughly investigate the current-heat-fluid mechanisms of different transmission strategies. Compared with copper-based power lines, the LM-FSPL exhibits superior heat transfer and hydrodynamic performance by homogenizing current distribution, suppressing localized heat accumulation, and optimizing thermal-flow pathways, resulting in a 62.7 % improvement in active-cooling capability. Additionally, we built the LM-FSPL test platform to investigate the adaptability of the system under various geometric configurations and charging currents. Experimental results revealed that the maximum temperature achieved by LM-FSPL only is 37.6 ℃ at the charging current of 1000 A. Our coupled thermal-electric current transmission strategy offers new opportunities for ultra-high power charging to promote the popularization of EVs.
S

SunView 深度解读

该液态金属热电耦合传输技术对阳光电源充电桩产品线具有重要价值。针对1000A+超大功率直流快充场景,液态金属同步实现载流与主动冷却,可显著提升充电站热管理效率。技术启示:1)可优化现有DC充电模块的热设计,突破功率密度瓶颈;2)柔性可弯曲特性适配充电枪线缆轻量化需求;3)62.7%的散热能力提升可降低冷却系统成本。建议结合公司SiC功率器件与液冷技术储备,探索液态金属在超充连接器、母排系统的应用,支撑800V高压平台下350kW+超充产品开发,增强市场竞争力。