← 返回
一种用于高功率燃料电池汽车的耦合式多模式热管理系统设计与控制及余热利用
A coupling and multi-mode thermal management system design and control for high-power fuel cell vehicles with utilizing waste heat
| 作者 | Zhongwen Zhua1 · Xin Wangab1 · Weihai Jiang · Weizhi Wanga · Cheng Lia · Shuhua Lia |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 328 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 多物理场耦合 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A flexible VITM for [FCVs](https://www.sciencedirect.com/topics/engineering/fuel-cell-vehicle "Learn more about FCVs from ScienceDirect's AI-generated Topic Pages") is proposed with utilizing waste heat. |
语言:
中文摘要
近年来,由于热管理系统对燃料电池汽车的整体经济性、环境适应性和车辆耐久性具有深远影响,其受到了广泛关注。本研究开发了一种集成式利用余热的燃料电池汽车热管理系统,以提高环境适应性和能源利用效率。该系统集成了多个热管理回路,包括燃料电池系统、动力电池、电驱动系统以及乘员舱。通过设计一个换热器,实现了燃料电池余热的回收以及各回路热量的高效管理。六通阀的集成设计可实现多个热管理回路的灵活解耦控制,并合理利用电驱动系统产生的余热。此外,针对燃料电池热管理系统中电气附件能耗较高以及换热器引入的外部热干扰问题,提出了一种以优化能耗为目标的自抗扰控制(ADRC)策略。对于电池与电驱动系统的集成热管理,采用了PID跟随模式控制策略。为应对不同车速条件下乘员舱热管理面临的挑战,提出了一种模糊-PID乘员舱热管理控制策略。仿真研究表明,在环境温度为−10 °C的低温工况下,将燃料电池的余热作为热泵空调系统的热源用于电池加热,相比直接加热方式,加热时间缩短了50%;乘员舱的加热时间缩短了70%。在热管理能耗方面,采用优化能耗的ADRC算法相比传统ADRC使热管理系统的能耗降低了43.6%。当系统运行于余热回收模式时,热泵空调系统的制热能效比达到4,能耗降低75%。综合性能的提升显著增强了燃料电池动力系统及整车的能源效率,同时改善了热管理系统在低温环境下的动态响应能力和环境适应性。
English Abstract
Abstract In recent years, the thermal management system of fuel cell vehicles has garnered significant attention due to its profound impact on the overall economy, environmental adaptability, and vehicle durability. In this study, an integrated thermal management system utilizing waste heat for fuel cell vehicles was developed to improve the environmental adaptability and energy efficiency. The system integrates multiple thermal management system loops, including fuel cell system, battery, electric drive system, and cabin. A heat exchanger was designed to achieve the recovery of waste heat from fuel cell and efficient management of each loop. The integrated design of a six-way valve can enable flexible decoupling management of multiple heat management loops and rational utilization of waste heat from the electric drive system. Additionally, an active disturbance rejection control (ADRC) for energy consumption optimization was proposed to address the high energy consumption of electrical accessories in fuel cell thermal management and the external thermal disturbances introduced by heat exchangers. For the integrated thermal management of the battery and electric drive system, a PID following mode control strategy was implemented. To address cabin thermal management challenges under various vehicle speed conditions, a fuzzy-PID cabin thermal management control strategy was proposed. Simulation studies indicate that in low ambient temperature of −10 °C, utilizing waste heat from fuel cells as the heat source for the heat pump air conditioning system to warm the battery reduced heating time by 50 % compared to direct heating methods. The heating time for the cabin was reduced by 70 %. In terms of thermal management energy consumption, the ADRC algorithm for optimizing energy consumption decreased thermal management energy consumption by 43.6 % compared to ADRC. When operating in waste heat recovery mode, the heating energy consumption ratio of the heat pump air conditioning system was 4, resulting in a 75 % reduction in energy consumption. The comprehensive improvement has enhanced the energy efficiency of the fuel cell power system and the entire vehicle, and improved the dynamic responsiveness and environmental adaptability of the thermal management system under low ambient temperature.
S
SunView 深度解读
该燃料电池多模式热管理技术对阳光电源EV动力系统及储能热管理具有重要借鉴价值。其多回路耦合设计理念可应用于PowerTitan储能系统的电池热管理优化,通过PCS功率器件余热回收降低HVAC能耗。ADRC自抗扰控制算法可集成至充电桩及OBC产品,提升宽温域适应性。六通阀解耦控制思路启发ST系列PCS在极端工况下的多物理场协同管理策略,模糊PID控制可优化iSolarCloud平台的预测性维护算法,最终实现储能系统43.6%能耗降低的工程目标,增强低温环境下系统动态响应能力。