← 返回
原边双环滞环控制实现感应式电力传输系统的快速动态响应与低功率纹波
Primary-Side Dual-Loop Hysteresis Control for Fast Dynamic Response and Low Power Ripples in Inductive Power Transfer Systems
| 作者 | Jiayu Zhou · Giuseppe Guidi · Shuxin Chen · Yi Tang · Jon Are Suul |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 原边双环滞环控制 感应电能传输系统 恒压负载 零电压开关 功率调节 |
语言:
中文摘要
本文提出一种用于串联-串联补偿感应式电力传输系统的原边双环滞环控制方法。两个并行滞环环路分别实现快速瞬态响应和精确稳态功率调节,有效抑制恒压负载电池充电应用中的功率振荡。通过引入选择性跳过电压脉冲实现功率精确调控,确保全工况下零电压开关。该方法避免跳过脉冲激发系统中欠阻尼振荡模态,且仅需原边闭环控制,无需高速通信,辅以低带宽链路完成稳态校正,在宽功率与耦合范围下兼具高效率与精确功率跟踪。仿真与小功率实验样机验证了该方法的有效性与实用性。
English Abstract
This paper presents a primary-side dual-loop hysteresis control method for series-series (SS) compensated inductive power transfer (IPT) systems. One of the two parallel hysteresis loops is designed to achieve fast transient response while the other ensures accurate steady-state power control and suppression of power oscillations in battery charging applications with constant voltage load (CVL) characteristics. Since the transferred power is accurately regulated by introducing individually skipped voltage pulses, zero voltage switching can be achieved across the entire operating range. The method also prevents the skipped pulses from exciting the poorly damped oscillation mode that can appear in IPT systems with CVLs. The closed-loop control is exclusively implemented on the primary side, eliminating the need for high-speed communication while allowing for steady-state correction through a low-bandwidth communication link. In addition to fast dynamic response, the proposed implementation enables high efficiency in a wide range of power and coupling while providing accurate power reference tracking. The proposed method is validated by simulations and results from a small-scale laboratory prototype, confirming its effectiveness and practicality.
S
SunView 深度解读
该原边双环滞环控制技术对阳光电源无线充电产品线具有重要应用价值。其快速动态响应与低功率纹波特性可直接应用于新能源汽车无线充电桩开发,解决电池充电过程中的功率振荡问题。原边闭环控制架构无需高速通信,降低系统成本与复杂度,适合ST储能系统的电池管理优化。选择性跳脉冲技术确保全工况ZVS,可提升SiC/GaN器件应用效率。该控制策略的宽功率范围适应性为阳光电源开发柔性充电解决方案提供技术储备,特别是在电动汽车、AGV等移动储能场景的感应式充电应用中具有显著工程价值。