← 返回
储能系统技术 储能系统 ★ 5.0

基于多阶段恒流温控策略的电动航空电池健康快速充电

Health-Conscious Fast Charging for Electrified Aircraft Batteries Using a Multistage-Constant-Current Temperature-Controlled Strategy

作者 Chandan Chetri · Sheldon Williamson
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年2月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电动飞机 快速充电 电池健康 MCC - TC充电策略 温度控制
语言:

中文摘要

电动飞机的运行效率与普及程度高度依赖其储能系统。快速充电虽可缩短停机时间、提升周转效率,但易因温升加剧和化学退化而损害电池健康,尤其在低温环境下更为显著。本文提出一种闭环多阶段恒流温控(MCC-TC)快速充电策略,通过实时温度反馈调节充电电流,有效保护航空级电池健康。实验结果表明,相较于传统CC-CV方法,MCC-TC显著降低了温升ΔT及温升速率ΔT/Δt。在−5 °C和30 °C下,ΔT分别降低47.68%和49.74%,ΔT/Δt分别降低65.35%和38.96%,验证了该算法在提升充电效率与电池寿命方面的潜力。

English Abstract

The operational efficiency and widespread adoption of electric aircraft are highly dependent on their energy storage systems. Fast charging is essential for reducing downtime and improving turnaround times, but it can negatively impact battery health due to increased temperatures and accelerated chemical degradation. This issue becomes more pronounced under subzero conditions, where reduced chemical reaction rates increase internal impedance, leading to a greater rise in battery temperature and faster degradation. This article proposes a closed-loop multistage-constant-current, temperature-controlled (MCC-TC) fast charging strategy designed to preserve the health of aviation-grade batteries. MCC-TC algorithm modulates charging current by incorporating real-time battery temperature feedback. The experimental validation shows that the MCC-TC algorithm significantly reduces temperature rise ( T ) and the rate of temperature rise ( T / t ) compared to the conventional constant-current constant-voltage (CC-CV) method. At - 5~^ C and 30~^ C, the MCC-TC algorithm achieved reductions in T and T / t of 47.68% and 65.35%, and 49.74% and 38.96%, respectively. These results highlight the potential of the algorithm to enhance battery health and improve the efficiency of the charging process.
S

SunView 深度解读

该多阶段恒流温控快速充电技术对阳光电源储能系统和充电桩产品线具有重要应用价值。针对ST系列储能变流器和PowerTitan大型储能系统,可借鉴其闭环温度反馈机制优化电池管理策略,在快充场景下通过动态调节充电电流降低温升47-50%,显著延长储能电池循环寿命。对于车载OBC充电机和充电桩产品,该算法可实现健康导向的快充控制,尤其在低温环境下通过温升速率控制降低65%的热应力,提升充电安全性。建议将MCC-TC策略集成至iSolarCloud平台的智能充电管理模块,结合预测性维护功能,实现储能系统全生命周期的健康优化管理。