← 返回
储能系统技术 储能系统 ★ 5.0

量化电容功率传输应用中开关电容逆变器的电荷共享损耗

Quantifying Charge Sharing Loss in Switched Capacitor Inverters for Capacitive Power Transfer Applications

语言:

中文摘要

现代电子应用要求逆变器在更高频率下运行并具有更低的总谐波失真(THD)。串联/并联开关电容(SPSC)逆变器已被证明可降低THD,并支持更高的开关速度。现有文献中的损耗分析主要集中于晶体管开关及寄生元件引起的损耗,然而当SPSC系统驱动容性负载时,电路中会产生电荷共享损耗。本文推导了稳态与暂态响应下的电荷共享损耗,暂态分析揭示了基于开关速度的分岔运行模式。提出了一种抑制该固有损耗的设计方法,并构建了1 Hz–7 MHz宽带简化的SPSC逆变器实验验证两种分岔模式,在6–7 MHz实现74%效率(硬开关)。最后将该逆变器应用于机器人电容式无线功率传输系统,结合实测输入波形与功率效率,验证设计方法与量化电荷共享损耗的关系。

English Abstract

Modern applications in electronics are demanding inverters to operate at higher frequencies and with lower total harmonic distortion (THD). Series/parallel switched capacitor (SPSC) inverters have been shown to produce reduced THD with the capability to function at higher switching speeds. The loss analysis presented in the literature for these inverters centers on losses from transistor switching and parasitic elements. However, when SPSC systems are terminated with a capacitive load, a charge sharing loss is created in the circuit. In this work, the charge sharing loss is derived for both steady-state and transient responses. The transient analysis leads to a bifurcated operation that is based on switching speed. A design methodology is discussed that mitigates this inherent loss in SPSC inverters. A simplified SPSC inverter circuit is constructed with a 1-Hz–7-MHz wideband operation to experimentally verify the two bifurcated modes, achieving 74% efficiency (hard switched) at 6–7 MHz. Finally, the inverter is applied to a unique robotic capacitive wireless power transfer application to demonstrate design methodology in relation to the quantified charge sharing losses. The input waveforms and power efficiency of the inverter are measured when operating the capacitive power transfer (CPT) device.
S

SunView 深度解读

该开关电容逆变器电荷共享损耗量化技术对阳光电源高频功率变换产品具有重要参考价值。在ST储能变流器中,精确量化电荷共享损耗可优化SiC/GaN器件的高频开关设计,提升6-7MHz频段硬开关效率至74%水平。对SG光伏逆变器的1500V高压系统,该分岔模式分析方法可指导MPPT算法在容性负载下的损耗抑制策略。在新能源汽车OBC充电机领域,宽带1Hz-7MHz运行特性与低THD设计可提升车载电源的电磁兼容性。该研究的暂态响应分析方法可应用于PowerTitan储能系统的快速功率响应场景,通过优化开关速度降低电容耦合损耗,提升系统整体效率与可靠性。