← 返回
电动汽车驱动 ★ 5.0

由并网电压源换流器外环控制器引起的极限环与大信号稳定边界

Limit Cycle and Large Signal Stability Boundary Induced by Outer Controller of Grid-Connected VSC

作者 Boyuan Zhao · Zhen Huang · Lei Chen · Kaiyuan Hou · Yong Min · Shujie Luo
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年9月
技术分类 电动汽车驱动
相关度评分 ★★★★★ 5.0 / 5.0
关键词 并网电压源变换器 极限环 大信号稳定性 吸引域 解析条件
语言:

中文摘要

本文揭示了并网电压源换流器(VSC)外环控制器引发的围绕稳定平衡点(SEP)的极限环现象,该极限环构成系统的大信号稳定边界。建立了包含直流与交流电压外环控制的三阶微分代数方程模型,发现随着有功功率增加、直流电压控制器带宽增大或阻尼比减小,系统易产生极限环。仿真表明极限环会缩小吸引域(ROA)。基于Demidowitsch准则,提出极限环不存在的解析型充分条件,可有效扩展ROA且无需依赖数值仿真。电磁暂态仿真与实验结果验证了理论分析的正确性。

English Abstract

This paper illustrates the phenomenon of the limit cycle surrounding the stable equilibrium point (SEP) induced by outer controller of grid-connected voltage source converter (VSC). The limit cycle is one of the oscillation mechanisms of a grid-connected VSC where its existence constitutes the large signal stability boundary. A third-order differential-algebraic equations (DAEs) studied model with DC and AC voltage outer controller is first developed. It is found that as the active power increases, DC voltage controller bandwidth increases or DC voltage controller damping ratio decreases, the system is prone to existing a limit cycle. Simulation reveals that the existence of a limit cycle reduces the region of attraction (ROA) under large signal. Furthermore, based on the Demidowitsch criterion, the paper proposes an analytical sufficient condition for non-existence of a limit cycle, so the system can be relieved from it and thus expand the ROA. The proposed condition can be effectively utilized without numerical simulations. Both the electromagnetic transient simulations and experimental results have verified the theoretical analysis.
S

SunView 深度解读

该研究揭示的VSC外环控制器极限环现象对阳光电源ST储能变流器和SG光伏逆变器的大信号稳定性设计具有重要指导意义。研究提出的基于Demidowitsch准则的解析型充分条件,可直接应用于直流电压外环和交流电压外环控制器参数整定,避免功率突变或电网扰动时系统进入极限环振荡。对于PowerTitan大型储能系统,该方法可优化直流侧电压控制带宽与阻尼比设计,扩展吸引域范围,提升系统在大功率充放电切换时的暂态稳定性。对于构网型GFM控制的储能变流器,该理论可指导交流电压外环参数设计,确保弱电网或孤岛模式下的大信号稳定运行,无需依赖耗时的数值仿真验证。