← 返回
储能系统技术 储能系统 ★ 5.0

两种新型等压液态二氧化碳储能系统与抽水蓄能耦合的热经济性能分析

Thermo-economic performance analysis of two novel isobaric liquid carbon dioxide energy storage systems coupled with pumped hydro storage

语言:

中文摘要

摘要 液态二氧化碳储能是一种有前景的稳定可再生能源输出的技术;然而,由非等压储存引起的低效率和不经济性通常被忽视。针对这一问题,本研究提出了两种新型与抽水蓄能耦合的等压液态二氧化碳储能系统,即抽水蓄能辅助式和高背压抽水蓄能辅助式系统。这些系统通过采用水力设计的二氧化碳-水共储罐实现等压储存。研究首先对基础系统进行动态行为分析,随后开展基于多目标优化的热经济性能对比、参数分析以及经济不确定性分析。结果表明,在基础系统中忽略非等压储存会导致总㶲效率存在26.44%的偏差、储能密度出现59.67%的相对偏离,并造成经济性高估。通过避免非稳态运行,高背压抽水蓄能辅助系统优于其他两个系统,其实现的总㶲效率、平准化储能成本和净现值分别为52.95%、0.131美元/千瓦时和3224万美元;而抽水蓄能辅助系统则实现了最高的储能密度,达到3.85千瓦时/立方米。为进一步提升系统的热经济性能,应重点关注压缩机、涡轮机、冷凝器和储罐等关键部件。此外,高背压抽水蓄能辅助系统表现出最优且稳定的经济性能,其平准化储能成本为0.154±0.022美元/千瓦时,净现值为2211±905万美元。通过扩大放电容量和运行时长,特别是在电价结构有利的地区,可进一步提高该系统的经济可行性。

English Abstract

Abstract Liquid carbon dioxide energy storage is a promising technology for stabilizing renewable power output; however, the inefficiency and diseconomy caused by non-isobaric storage are generally overlooked. In response, this study proposes two novel isobaric liquid carbon dioxide energy storage systems coupled with pumped hydro storage , the pumped hydro storage-assisted and high backpressure pumped hydro storage-assisted systems. These systems achieve isobaric storage by incorporating hydraulically designed carbon dioxide-water co-storage tanks. The study begins with a dynamic behavior analysis of the basic system, followed by a thermo-economic performance comparison, parametric analysis, and an economic uncertainty analysis based on multi-objective optimization. Results show that neglecting non-isobaric storage in the basic system leads to a 26.44 % discrepancy in total exergy efficiency , a 59.67 % relative deviation in energy storage density and an economic overestimation. By avoiding unsteady-state operation, the high backpressure pumped hydro storage-assisted system outperforms the other two, achieving a total exergy efficiency, levelized cost of storage and net present value of 52.95 %, 0.131 $/kWh and 32.24 M$, respectively, while the pumped hydro storage-assisted system achieves the highest energy storage density at 3.85 kWh/m 3 . To further enhance thermo-economic performance, attention can be paid to key components such as compressor, turbine, condenser and tanks. Additionally, the high backpressure pumped hydro storage-assisted system exhibits the most favorable and stable economic performance, with a levelized cost of storage of 0.154 ± 0.022 $/kWh and a net present value of 22.11 ± 9.05 M$. The system economic viability can be further improved by expanding discharge capacity and operating durations, particularly in regions with favorable electricity price structures.
S

SunView 深度解读

该液态CO2储能技术为阳光电源储能系统提供重要参考。研究揭示非等压储能导致26.44%效率偏差和经济性高估,对ST系列PCS和PowerTitan系统设计具有启示意义。等压储能方案实现52.95%火用效率和0.131美元/kWh平准化成本,可指导阳光电源优化储能系统热管理策略、压缩机-涡轮协同控制及储罐设计。结合iSolarCloud平台的预测性维护能力,可开发新型长时储能解决方案,特别适用于可再生能源并网场景,提升系统经济性和稳定性。