← 返回
光伏发电技术 储能系统 空间矢量调制SVPWM 三电平 ★ 5.0

减少器件数量的三级开关电容升压逆变器

Three-Level Switched-Capacitor Boost Inverter With Reduced Component Count

语言:

中文摘要

本文提出一种新型少器件三级开关电容升压逆变器(3L-SC-BI)。其逆变侧仅需八个开关,较传统三级F型逆变器节省四个开关。采用开关电容结构可实现中点电压自平衡,无需电压传感器,并提升电压增益。与传统开关电容逆变器不同,电容并联时无显著涌流,其电流由电感电流限制。提出一种新的空间矢量调制方法,利用低直通状态在小矢量期间实现电容并联充电,且不影响输出电压。调制指数与升压开关占空比独立控制,提高了调制利用率,实现高电压增益和低器件电压应力。实验通过1-kVA样机验证,相比现有拓扑,在G=3.12和G=2.4时效率分别提升2.06%和1.2%。

English Abstract

This article proposes a new reduced component count three-level switched-capacitor boost inverter (3L-SC-BI). The inverter side of the 3L-SC-BI uses only eight switches, which saves four switches compared to conventional three-level F-type inverter (3L-FTI). The use of SC structure helps to balance neutral-point voltage (NPV) without requiring voltage sensors and increase voltage gain of the inverter. Unlike conventional SC-based inverters, there are no high inrush charging currents of capacitors when they are connected in parallel. The currents of capacitors are limited by inductor current. A new space vector modulation (SVM) method is presented to control the introduced inverter. This SVM method uses lower-shoot-through (LST) state to connect capacitors in parallel. This LST state is inserted within small-voltage vectors without affecting output voltages. In this scheme, modulation index and duty ratios of boost switches are separately controlled, which enhances modulation index utilization. It results in high-voltage gain G and small component voltage stresses compared to traditional inverters. The proposed inverter is validated through 1-kVA prototype. The proposed inverter improves 2.06% of efficiency at G = 3.12 % and 1.2% of efficiency at G = 2.4 at 1-kW output power compared to existing 3L quasi-switched boost FTI.
S

SunView 深度解读

该三级开关电容升压逆变器技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。其核心优势在于:1)减少四个开关器件,可直接降低PowerTitan储能系统的功率模块成本和体积;2)中点电压自平衡特性简化了三电平拓扑的控制复杂度,提升系统可靠性;3)高电压增益(G=3.12)特别适合低压储能电池(如磷酸铁锂48V系统)直接并网应用,减少DC/DC升压级;4)所提SVPWM方法与阳光电源现有空间矢量调制技术兼容,可快速集成到现有控制平台;5)效率提升1.2%-2%对大型储能电站年发电量有显著贡献。建议在下一代1500V储能变流器中验证该拓扑的工程化可行性。