← 返回
储能系统技术 储能系统 ★ 4.0

基于先进趋近律的卷盘式喷灌机滑模速度控制

An Advanced Reaching Law for Sliding Mode Speed Control of Electric Reel Sprinkler Irrigation Machine

作者 Wei Wang · Abdul Rahim Junejo · Irfan Ahmed Shaikh · Yue Tang · Xinpeng Zhang · Lingdi Tang
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年9月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 卷盘式喷灌机 电动驱动系统 滑模速度控制器 干扰补偿 控制精度
语言:

中文摘要

为实现卷盘式喷灌机电动驱动系统的高精度控制,针对系统存在的非线性摩擦、外部扰动及参数失配问题,提出一种基于先进滑模趋近律(ASMRL)与新型滑模观测器(NSMO)的滑模速度控制方法。通过建立考虑转动惯量与时变负载的数学模型,改进传统终端滑模趋近律,采用幂次分段函数替代符号函数,并引入指数与幂项,加快趋近速度并抑制抖振。理论分析表明ASMRL具有更快收敛性与更强抖振抑制能力。设计NSMO精确估计总扰动并在控制中补偿。实验结果表明,相较传统PI与TSMC方法,ASMC+NSMO将稳态误差分别降低88.57%和69.46%,显著提升控制精度。

English Abstract

The high-precision control of the electric drive system for the reel sprinkler machine is essential for ensuring efficient and stable operation. However, nonlinear friction, external disturbances, and parameter mismatches significantly degrade the performance of the system. To address these issues, this paper presents a sliding mode speed controller based on the advanced sliding mode reaching law (ASMRL) and a novel sliding mode observer (NSMO) for disturbance compensation. First, a mathematical model is developed, considering the time-varying moment of inertia and load of the reel. Next, the traditional terminal sliding mode reaching law (TSMRL) is improved by replacing the sign function with a power piecewise function, and by incorporating exponential and power terms. This method accelerates the convergence of the system to the sliding mode surface while effectively reduces chattering. A detailed theoretical analysis of ASMRL demonstrates that it achieves faster convergence and more effective chattering suppression compared to TSMRL. Furthermore, a precise NSMO is developed to estimate the total disturbance of the system, which is then compensated for within the ASMC. Experimental results demonstrate that, compared to traditional PI and TSMC methods, the ASMC+NSMO approach significantly improves control accuracy, reducing the steady-state error by 88.57% and 69.46%, respectively.
S

SunView 深度解读

该先进滑模控制技术对阳光电源电机驱动类产品具有重要应用价值。ASMRL+NSMO方案可直接应用于:1)新能源汽车电机控制器,提升电驱系统在负载突变、参数漂移工况下的速度响应精度与抗扰性能;2)储能系统PCS中的风机/水泵电机控制,降低88%稳态误差可显著提升散热系统效率;3)光伏跟踪支架驱动电机,增强抗风扰能力。其幂次分段函数抑制抖振的思路可借鉴至SG/ST系列逆变器的并网电流控制,优化传统滑模观测器在弱电网下的振荡问题。扰动观测补偿机制与阳光PowerTitan系统的多扰动源抑制需求高度契合,可提升大型储能系统功率控制精度。