← 返回
储能系统技术 储能系统 ★ 5.0

CMLLM:一种用于风电功率预测的新型跨模态大语言模型

CMLLM: A novel cross-modal large language model for wind power forecasting

作者 Guopeng Zhu · Weiqing Ji · Zhitai Xing · Ling Xiang · Aijun Hu · Rujiang Hao
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 330 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 短期风电预测 电网稳定性 风电场储能系统 风能随机性 风电预测挑战
语言:

中文摘要

准确的短期风电功率预测对于保障电网稳定性以及优化风电场-储能系统的运行至关重要。然而,风能固有的随机性和高度波动性给风电功率预测带来了显著挑战。为了利用大语言模型强大的推理能力与高层知识,以精确提取非平稳风电数据中的特征,本文提出了一种用于风电功率预测的跨模态大语言模型(CMLLM)。该模型采用数据跨模态方法并结合预训练的大语言模型,能够高效兼容多种大语言模型,并适应具有不同特性的数据。在CMLLM中,通过引入跨模态迁移学习方法对数据进行综合处理,将数据转换为文本模态,从而避免了对大语言模型进行重新训练或微调的需求,同时有效缓解了因模态不匹配导致的预测精度下降问题。在预测过程中设计了先验知识提示前缀模块,以增强特征提取能力,并激活大语言模型在风电功率预测任务中的推理功能。本文在中国三个风电场的数据集上开展了大量实验,以评估CMLLM的性能。实验结果验证了该模型在不同类型数据集以及多种大语言模型下的有效性、准确性与鲁棒性。

English Abstract

Abstract Accurate short-term wind power forecasting is crucial for ensuring grid stability and optimizing the operation of wind farm-energy storage systems. However, the inherent randomness and high variability of wind energy present significant challenges to wind power forecasting. To leverage the powerful reasoning capabilities and high-level knowledge of large language models for accurately extracting features from non-stationary wind power data, a cross-modal large language model (CMLLM) is proposed for wind power forecasting. This model employs data cross-modal and pre-trained large language models, enabling efficient compatibility with various large language models and adaptability to data with different characteristics. In CMLLM, data is comprehensively processed through the adoption of a cross-modal transfer learning method. Data is converted into text modality, thereby eliminating the need for re-training or fine-tuning large language models, while effectively mitigating the decline in forecasting accuracy due to modal mismatches. A prior knowledge prompt prefix module is designed in the forecasting process to enhance feature extraction and activate the reasoning capabilities of the large language model for wind power forecasting tasks. Extensive experiments are carried out on datasets from three wind farms in China to evaluate the performance of CMLLM. The results validate the model's effectiveness, accuracy, and robustness across diverse datasets and a range of large language models.
S

SunView 深度解读

该跨模态大语言模型风电预测技术对阳光电源储能系统具有重要应用价值。可集成至ST系列PCS和PowerTitan储能系统的智能调度模块,通过精准短期风电功率预测优化风储协同运行策略,提升电网稳定性。该模型的跨模态迁移学习方法和先验知识提示机制,可启发iSolarCloud平台的预测性维护算法升级,增强对非平稳新能源数据的特征提取能力。结合GFM控制技术,可实现储能系统对风电波动的快速响应和功率平滑,降低弃风率,提高风储系统整体经济性。