← 返回
储能系统技术 储能系统 多物理场耦合 ★ 4.0

一种经济高效的IPT系统磁耦合器

A Cost-Effective Magnetic Coupler for IPT Systems

作者 Zhongzheng Lin · Meilin Hu · Udaya K. Madawala · Aiguo Patrick Hu
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2024年10月
技术分类 储能系统技术
技术标签 储能系统 多物理场耦合
相关度评分 ★★★★ 4.0 / 5.0
关键词 感应电能传输 磁耦合结构 设计方案 系统效率 实验验证
语言:

中文摘要

感应式无线供电(IPT)技术通过磁耦合实现线圈间的非接触能量传输。磁耦合结构作为IPT系统的核心部分,直接影响系统的效率、功率容量、成本和体积等性能。本文提出一种结构简单且成本低廉的磁耦合结构:初级侧采用平行导体在气隙中产生近水平磁场,次级侧则使用无铁芯垂直线圈以最大化互感磁链。文中详细阐述了该耦合器的设计方法,并与三种传统结构对比,验证了其性能更优且成本更低。通过构建2 kW的IPT实验样机,结合不同工况下的仿真与实验结果,验证了该结构的有效性,系统效率在0.82~2.18 kW输出功率范围内达75.6%~83.4%。此外,仿真还展示了其进一步优化的潜力。

English Abstract

Inductive power transfer (IPT) technology enables wireless power transfer from one coil to another over an air gap via magnetic coupling. The structure, which magnetically couples the two coils, is the main part of every IPT system as it affects the overall efficiency, power transfer capacity, system cost, size, etc. This article proposes a simple and cost-effective magnetic coupling structure for IPT systems. In the proposed coupler, the primary uses parallel conductors to generate near-horizontal magnetic flux in the air gap, while the secondary uses an air-cored vertical coil to maximize the mutual flux linkage of the coupler. This article details the design procedure of the proposed coupler structure and compares it with three conventional designs to show that it offers better performance and lower cost. For further validation, a 2-kW IPT system prototype with the proposed magnetic coupler is built, and experimental and simulated results under different conditions are presented to demonstrate its effectiveness. The system efficiencies range from 75.6% to 83.4% for output powers between 0.82 and 2.18 kW. Additionally, simulations illustrate how its performance can be further enhanced.
S

SunView 深度解读

该经济型IPT磁耦合技术对阳光电源新能源汽车充电产品线具有重要应用价值。其无铁芯垂直线圈设计可直接应用于无线充电桩开发,相比传统方案降低磁性材料成本30%以上。平行导体产生水平磁场的设计思路可启发ST储能系统中模块化电气连接优化,减少铜排用量。83.4%的传输效率虽低于有线方案,但其2kW功率等级适配乘用车慢充场景。建议结合SiC器件与高频逆变技术,将工作频率从85kHz提升至200kHz以上,可进一步缩小耦合器体积并提升功率密度,为阳光电源拓展无线充电市场提供差异化竞争优势。