← 返回
电动汽车驱动
★ 5.0
基于模拟的双回路设计实现锗敏化热电池在等温条件下连续发电的研究
Simulation-based study on a dual-circuit design for achieving continuous power generation in Ge-sensitized thermal cells under isothermal conditions
| 作者 | Keting Chen · Mie Tohnishi · Akihiro Matsutani · Sachiko Matsushit |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 331 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A new dual-circuit structure is introduced for Ge-sensitized thermal cells (Ge-STC). |
语言:
中文摘要
摘要 半导体敏化热电池(STC)是一种突破性的热电转换技术,能够将低温热能(<200 °C)直接转化为电能。其工作原理基于半导体中热激发载流子引发的氧化还原反应。该技术最引人注目的特点之一是:一旦STC放电终止,只需关闭开关并将其保留在热源中,即可恢复发电能力。然而,在此恢复期间,系统无法产生电力,这显著影响了STC系统的整体效率。为解决这一问题,本研究提出了一种采用叉指阵列(IDA)电极的双回路STC模型,通过在单个STC内部交替切换两个电路,旨在消除恢复时间并实现持续发电。本研究采用模拟与实验相结合的方法对该模型的性能进行了评估。电池结构的二维(2D)模拟结果证实,电路切换可触发另一电路中具有足够反应离子浓度的氧化还原反应,从而实现连续放电。实验结果也验证了所制备电池中观察到的连续发电现象。该双回路系统实现了约270 mV的开路电压Voc(两个电路均如此),以及约0.30 μA的短路电流Isc(对应面电流密度Jsc为5 μA/cm²),显示出在物联网(IoT)设备应用中的巨大潜力。
English Abstract
Abstract The semiconductor-sensitized thermal cell (STC) is a groundbreaking thermoelectric technology capable of converting low-temperature heat (<200 °C) directly into electricity. It is based on a redox reaction initiated by thermally excited carriers in a semiconductor. One of its most appealing features is that once the STC reaches discharge termination, power generation can be restored by turning off the switch and leaving it in the heat source. However, during this recovery period, no power is generated, which significantly affects the efficiency of the STC system. To address this issue, this study proposes a dual-circuit STC model utilizing interdigitated array (IDA) electrodes, designed to eliminate recovery time and enable continuous power generation by alternating between two circuits within a single STC. Simulation and experimental methods were employed to assess the performance of this model. Two-dimensional (2D) simulations of the battery structure confirm that circuit switching triggers the redox reaction in the alternate circuit with sufficient reactant ions, enabling continuous discharge. Experimental results validate the continuous power generation observed in the fabricated cells. The dual-circuit system achieves an open circuit voltage Voc of approximately 270 mV (for both circuits) and a short circuit current Isc of around 0.30 μA (Jsc of 5 μA/cm 2 ), demonstrating significant potential for application in IoT devices.
S
SunView 深度解读
该半导体敏化热电池技术为阳光电源储能系统提供创新思路。其低温热电转换(<200°C)特性可应用于ST系列PCS和PowerTitan储能系统的余热回收,双回路连续发电设计可借鉴于储能电池管理系统优化。交叉指状电极结构与氧化还原机制对提升储能系统能量密度和循环寿命具有参考价值,特别适合iSolarCloud平台集成的分布式IoT监测设备供电,减少维护成本,增强智能运维能力。