← 返回
储能系统技术 储能系统 多电平 模型预测控制MPC ★ 5.0

无模型预测控制在五电平T型嵌套中点箝位变换器中的应用

Model-Free Predictive Control of Five-Level T-Type Nested Neutral Point Clamped Converter

语言:

中文摘要

多电平变换器已成为中高压大功率应用的重要解决方案,其中五电平T型嵌套中点箝位(5L-T-NNPC)结构因硬件需求少、电压适用范围广而备受关注。传统有限控制集模型预测控制(FCS-MPC)虽动态响应快,但依赖精确的系统模型,参数失配易导致性能下降。为此,本文提出一种新型无模型预测控制(MF-PC),无需精确建模,仅利用变换器运行数据通过最小二乘法辨识自回归外生(ARX)模型参数,具有良好的参数鲁棒性。仿真与实验结果表明,所提MF-PC在5L-T-NNPC变换器上的控制性能优于传统FCS-MPC。

English Abstract

Multilevel converters have been turned into a prominent solution for high-power, medium-voltage applications. However, controlling multilevel converters is a complex task, which is typically implemented through single-input-single-output loops or via finite control set model predictive control (FCS-PC). Moreover, among the latest proposed multilevel converters, the five-level T-type nested neutral point clamped (5L-T-NNPC) stands out due to its reduced hardware requirements and wide voltage range applications. Although finite control set model predictive controller (FCS-MPC) has good performance with a fast dynamic response for operating this converter, this control strategy requires a detailed model of the converter, where parameter or model mismatch will degrade its performance. To improve the operation, this article proposes a novel model-free predictive control (MF-PC) that does not require a detailed model of the converter to operate, and it is robust under parameter mismatch. Indeed, it only requires the operation data of the converter to identify the parameters of a general autoregressive with exogenous (ARX) model via the least squares algorithm. Experimental and simulation results validate the better performance of the proposed MF-PC over the conventional FCS-MPC for a 5L-T-NNPC converter.
S

SunView 深度解读

该无模型预测控制技术对阳光电源ST系列储能变流器和SG大功率光伏逆变器具有重要应用价值。五电平T-NNPC拓扑的硬件精简特性契合阳光电源PowerTitan大型储能系统的成本优化需求,其宽电压范围适配1500V高压系统。MF-PC方法通过在线ARX参数辨识,可显著提升产品在温度漂移、器件老化等工况下的参数鲁棒性,解决传统FCS-MPC因电感电容参数失配导致的控制性能下降问题。该技术可与阳光电源现有GFM构网型控制策略结合,增强储能系统在弱电网环境下的稳定性,同时为iSolarCloud平台提供基于运行数据的智能参数自适应功能,提升预测性维护能力。