← 返回
电动汽车驱动
★ 5.0
基于热力学指标的热管理系统多目标运行参数虚拟标定技术研究
Research on virtual calibration technology for multi objective operating parameters of thermal management system based on thermodynamic indicators
| 作者 | Haoyuan Chen · Kunfeng Liang · Chunyan Gao · Yunpeng Zhang · Xun Zhou · Bin Chen · Chenguang Zhang · Haolei Duan · Shuopeng Li |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 332 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A directly-cooling system for cabin comfort and [battery](https://www.sciencedirect.com/topics/engineering/battery-electrochemical-energy-engineering "Learn more about battery from ScienceDirect's AI-generated Topic Pages") safety was developed. |
语言:
中文摘要
摘要 随着纯电动汽车的快速发展,相关技术问题仍然存在,高效可靠的热管理系统是提升整车性能的核心挑战之一。本研究提出一种多模式直接冷却热管理系统,旨在满足温度控制需求的同时,优化能源效率、成本及环境影响。建立了系统的实验与仿真平台作为数据来源,并构建了包含三个指标的热力学分析框架,利用实验数据评估不同运行参数对系统性能的影响。结果表明,系统蒸发温度升高5 °C时,在两种模式下总能量损失降低约12.6%,环境影响减少4.65%,但成本均增加约12%;系统在不同运行模式下均存在一组最优运行参数。在热力学分析的指导下,将三个热力学指标和关键运行参数分别作为目标函数和决策变量进行优化。采用非支配排序遗传算法(NSGA-II),开发了系统的多目标虚拟标定技术,使两种模式下的㶲效率平均提升18.2%,同时总成本率降低11.1%,环境影响率降低30.9%。基于AMESim平台对优化参数进行虚拟标定验证,结果表明所提出的方案在确保温度控制性能的前提下,显著提高了能源利用效率,并降低了经济与环境代价,展现出良好的应用潜力。
English Abstract
Abstract With the rapid development of battery electric vehicle, technical problems still exist, and an efficient and reliable thermal management system is a core challenge to improve vehicle performance.This study proposes a multi-mode directly-cooling thermal management system to meet temperature control requirements while optimizing energy efficiency, cost, and environmental impact. An experimental and simulation platform for the system was established as the data source, and a thermodynamic analysis architecture including three indicators was developed to evaluate the impact of different operating parameters on system performance using experimental data. The results show that a 5 °C increase in the system evaporation temperature reduced total energy loss by approximately 12.6 % and environmental impact by 4.65 %, while increasing costs by about 12 % in both modes, system has a set of optimal operating parameters under different operating modes. Under the guidance of thermodynamic analysis, three thermodynamic indicators and key operating parameters were optimized as objective functions and decision variables. The Non-dominated sorting genetic algorithm was applied to develop a multi-objective virtual calibration technology for system parameters, leading to an 18.2 % increase in exergy efficiency across both modes, along with reductions of 11.1 % in total cost rate and 30.9 % in environmental impact rate. Based on the AMESim platform, virtual calibration of optimized parameters demonstrates that the proposed scheme ensures temperature control performance while significantly improves energy efficiency, and reduces economic and environmental impacts, showing strong application potential.
S
SunView 深度解读
该热管理多目标优化技术对阳光电源电动汽车充电及储能热管理系统具有重要价值。研究中的热力学三指标评估体系(能效、成本、环境影响)可应用于ST系列PCS和PowerTitan储能系统的温控优化,通过遗传算法实现参数虚拟标定,提升18.2%火用效率同时降低30.9%环境影响。该方法可指导阳光电源OBC车载充电机及充电桩的液冷系统设计,在保证功率器件温控性能前提下优化能耗经济性,特别适用于大功率SiC/GaN器件的热管理策略开发,为iSolarCloud平台集成预测性热管理算法提供技术路径。