← 返回
储能系统技术 ★ 5.0

基于时域分析的LCC-LCC补偿感应式电力传输变换器不连续工作状态的精确建模

Accurate Modeling of Discontinuous Operating State for LCC–LCC Compensated Inductive-Power-Transfer Converters by Time-Domain Analysis

作者 Xian Zhang · Hualei Zheng · Fei Xu · Zhixin Chen
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2024年11月
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 LCC - LCC补偿拓扑 感应电能传输系统 输出电流模型 时域分析 电池充电
语言:

中文摘要

LCC-LCC补偿拓扑广泛应用于感应式电力传输(IPT)系统以实现恒流(CC)输出,适用于电池充电。然而,传统基于频域基波分析(FHA)建立的数学模型在负载电阻大于阈值RL > πωLfs/2时无法准确描述输出电流,因其忽略了整流器输入电流的不连续半正弦特性。本文首次提出一种精确的时域分析(TDA)方法,用于推导LCC-LCC补偿IPT系统的输出电流模型。结果表明,输出电流随负载电阻增大而减小,与FHA结论截然不同。仿真与实验验证了所提TDA模型的准确性,且与理论分析一致。该方法可为设计LCC-LCC型IPT变换器参数提供指导,实现电池充电时额定输出的小误差控制。

English Abstract

The LCC-LCC compensation topology has been widely applied to inductive-power-transfer (IPT) systems to achieve constant-current (CC) output for battery charging. However, the mathematical model for the CC output is usually derived by fundamental-harmonic analysis (FHA) applied in the frequency domain, which cannot describe the output current accurately when the load resistance is larger than a threshold value, i.e., R_L L_fs /2, because of the discontinuous part-sine current flowing into the rectifier. To tackle this problem, in this article, an accurate time-domain analysis (TDA) is first proposed to derive the mathematical model of output current for the LCC-LCC compensated IPT system. The derived output model shows that the output current would decrease with the increase of load resistance, which is totally different from the conclusion from FHA. Both simulation and experimental results are presented to validate the accuracy of our derived output current model by TDA, which is consistent with our theoretical results. The proposed method can provide guidance on how to design the parameters of LCC-LCC compensated IPT converters to achieve rated outputs with small tolerance errors for battery charging.
S

SunView 深度解读

该LCC-LCC补偿IPT系统的时域精确建模技术对阳光电源无线充电产品线具有重要应用价值。研究揭示的不连续工作状态建模方法可直接应用于电动汽车无线充电桩和储能系统无线充电模块设计。传统FHA方法在大负载电阻时的建模误差会导致恒流输出失准,影响电池充电安全性。所提TDA方法能准确预测整流器输入电流的不连续半正弦特性,为阳光电源开发高精度CC输出控制算法提供理论基础,可优化充电桩OBC模块的参数设计,实现全负载范围内额定输出小误差控制,提升电池充电效率和安全性,增强产品市场竞争力。