← 返回
储能系统技术 储能系统 ★ 4.0

结合数据驱动与等效电路模型的无线电力传输系统互感及负载识别

Mutual Inductance and Load Identification of Wireless Power Transfer Systems Combining Data-Driven and Equivalent Circuit Models

作者 Xu Wang · Yanjie Guo · Fei Xu · Ming Xue · Ruimin Wang · Zepeng Zhang
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2024年10月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 无线电能传输 互感与负载识别 电路与数据驱动模型 支持向量回归 识别精度
语言:

中文摘要

互感和负载变化影响无线电力传输(WPT)系统性能,准确识别这些参数对系统控制与状态监测具有重要意义。现有方法多基于电路模型,易受参数误差影响。本文提出一种融合电路模型与数据驱动模型的互感和负载识别方法,兼具数据驱动模型抗参数误差能力强和电路模型物理意义明确的优点,仅需WPT系统的直流输入电流和一个电压有效值即可实现精确识别,无需无线通信。采用支持向量回归(SVR)建立数据驱动模型,并结合考虑整流器等效输入阻抗的电路模型推导参数关系,进而提出负载识别方法。实验结果表明,互感、负载电阻和负载电压的最大识别误差分别为2.61%、4.10%和3.96%,验证了该方法在不同互感与负载条件下均具有高识别精度。

English Abstract

The variations of mutual inductance and load conditions affect the performance of wireless power transfer (WPT) systems. Identification of these parameters will be helpful for system control and condition monitoring. Circuit models are normally adopted in the existing WPT parameter identification methods, while the identification accuracy is easily impacted by the circuit parameter errors. In this article, a WPT mutual inductance and load identification method combining circuit and data-driven models is proposed. It has the advantage of a data-driven model that is not easily affected by parameters and a circuit model that is straightforward. Meanwhile, it can achieve accurate parameter identification only using the WPT dc input current and one voltage rms value without wireless communication. First, support vector regression (SVR) is adopted to establish the WPT data-driven model, and the mutual inductance identification algorithm is discussed. Then, parameter relationships are obtained from the WPT circuit model, considering the rectifier’s equivalent input impedance. Furthermore, the load identification method is presented based on the mutual inductance identification result. Finally, a WPT experimental prototype is built, and the experimental results show that the maximum identification errors of mutual inductance, load resistance, and load voltage are 2.61%, 4.10%, and 3.96%, respectively. They indicate that the proposed method can achieve high identification accuracy under the conditions of WPT mutual inductance and load variations.
S

SunView 深度解读

该互感与负载识别技术对阳光电源无线充电产品线具有重要应用价值。在新能源汽车充电桩业务中,可应用于无线充电系统的实时参数监测与自适应控制,通过融合SVR数据驱动模型与等效电路模型,仅需直流输入电流和电压有效值即可实现互感、负载的高精度识别(误差<5%),无需无线通信降低系统成本。该方法可增强阳光电源无线充电产品的智能化水平,实现线圈偏移容忍、异物检测、功率自适应调节等功能,并可集成至iSolarCloud平台实现预测性维护。其抗参数误差能力强的特点,对提升储能系统中感应式能量传输模块的鲁棒性也具有借鉴意义,支撑阳光电源在电动汽车无线充电领域的技术布局。