← 返回
基于ARX的无模型预测控制器中多项式阶次的设计方法
Design Method for Polynomial Orders in ARX-Based Model-Free Predictive Controllers
| 作者 | Bryan Cartes · Patricio Burgos · Claudio A. Cifuentes · Hector Young · Yao Wei · Christian A. Rojas |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年10月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 构网型GFM |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 无模型预测控制 ARX多项式阶数设计 统计准则 并网逆变器电压控制 实验验证 |
语言:
中文摘要
无模型(MF)策略为预测控制(PC)系统中的建模误差与不确定性问题提供了有效解决方案。采用自回归外生输入(ARX)模型的MF-PC方法可利用输入输出数据灵活构建在线预测器。然而,ARX结构中多项式阶次的设计至关重要,直接影响模型精度与计算代价的平衡。本文提出一种基于经典统计准则的ARX阶次系统化设计方法,相较于传统试错法,该方法简洁高效,仅需被控系统的通用信息即可实现精确设计。通过在构网型逆变器(GFI)电压控制中的应用验证了其有效性,实验结果表明该方法在设定值变化和负载扰动下均具备良好的鲁棒性与跟踪精度。与传统基于模型的PC相比,在存在模型不确定性时,采用所提方法设计ARX预测器的MF-PC具有明显优势。
English Abstract
Model-free (MF) strategies have emerged as a promising solution to challenges associated with modeling errors and uncertainties in predictive control (PC) systems. In this context, MF-PC schemes utilizing Auto-Regressive with eXogenous input (ARX) time-series models offer a flexible approach for online predictor construction using input-output data. However, the design of the polynomial orders within the ARX structure is critical, as it determines the balance between model accuracy and computational cost. This article presents a novel systematic method for designing ARX polynomial orders in MF-PC, based on well-established statistical criteria. Unlike traditional trial-and-error approaches, the proposed method offers simplicity and efficiency, allowing for accurate designs using general information about the controlled system. To demonstrate its feasibility, the proposed method is applied to the design of a MF-PC voltage control of a grid-forming inverter (GFI). Experimental trials conducted in a laboratory-scale GFI validate the effectiveness of the proposed method, delivering robust and accurate reference tracking under set-point and load disturbances. A comparison with conventional model-based PC highlights the advantages of MF-PC with an ARX predictor designed using the proposed methodology in the presence of model uncertainty.
S
SunView 深度解读
该ARX无模型预测控制技术对阳光电源储能与逆变器产品具有重要应用价值。在PowerTitan储能系统和ST系列储能变流器的构网型GFM控制中,传统模型预测控制依赖精确系统参数,而实际运行中电网阻抗、滤波器参数存在不确定性。该方法通过输入输出数据在线构建ARX预测器,无需精确建模即可实现电压快速跟踪与扰动抑制,显著提升负载突变工况下的鲁棒性。所提多项式阶次系统化设计方法避免传统试错,可快速部署于SG系列光伏逆变器的并网控制和充电桩功率调节场景。该技术为阳光电源iSolarCloud平台的自适应控制算法库提供理论支撑,助力实现储能系统在复杂电网环境下的即插即用与智能优化。