← 返回
采用典型无功功率控制策略的构网型变流器暂态功角与电压稳定性
Transient Angle and Voltage Stability of Grid-Forming Converters With Typical Reactive Power Control Schemes
| 作者 | Wenjia Si · Jingyang Fang · Xingyou Chen · Tao Xu · Stefan M. Goetz |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年10月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 构网型GFM 下垂控制 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电网形成变流器 无功功率控制 暂态稳定性 控制方案 实验验证 |
语言:
中文摘要
构网型变流器被视为电力电子化电力系统的关键技术,但其在暂态过程中常被忽视的无功功率控制问题亟待研究。本文创新性地指出,采用典型无功控制策略(如电压下垂、无功下垂及无功PI控制)的构网型变流器可能面临暂态功角和/或电压稳定性问题。研究表明,零阶无功控制仅存在功角稳定问题,但无功调节能力有限;而一阶控制(如PI控制)虽可实现恒定无功运行,却可能引发功角、电压及混合稳定性问题。本文揭示了其失稳机理,并对典型控制方案进行了全面比较,实验结果验证了理论分析。
English Abstract
Grid-forming converters have been identified as an enabling technology in more-electronic power systems. Nevertheless, the reactive power control of grid-forming converters has often been ignored during transients. This article innovatively points out the transient angle and/or voltage instability of grid-forming converters with typical reactive power control schemes, comprising voltage, reactive power droop, and reactive power PI control schemes. We disclose that the grid-forming converter with the voltage, reactive power droop, or other zero-order reactive control schemes faces only the transient angle stability problem yet with a limited capacity for reactive power/power factor regulation. In contrast, the reactive power PI control scheme, as a first-order reactive control scheme, allows for constant reactive power/power factor operation. However, this control scheme or other first-order reactive control schemes may destabilize grid-forming converters through three transient stability problems—transient angle, voltage, and mixed stability problems. Moreover, we disclose the mechanisms behind these transient stability problems. Furthermore, we present a thorough comparison of typical reactive power control schemes. Finally, experimental results verify theoretical analyses.
S
SunView 深度解读
该研究对阳光电源ST系列储能变流器和PowerTitan大型储能系统的构网型GFM控制策略优化具有重要价值。文章揭示的无功控制与暂态稳定性耦合机理,可直接应用于优化阳光电源储能系统在弱电网场景下的电压支撑能力。针对零阶控制(电压/无功下垂)和一阶控制(PI调节)的稳定性差异分析,为ST系列产品在不同电网强度下选择最优无功控制策略提供理论依据。特别是混合稳定性问题的揭示,可指导阳光电源改进构网型控制算法,提升储能系统在大扰动下的暂态功角稳定裕度和电压恢复能力,增强产品在独立微网和弱电网并网场景的适应性,支撑iSolarCloud平台的智能稳定性预警功能开发。