← 返回

一种增强型惯性下垂控制以最小化构网型逆变器接口对动态电网条件的敏感性

An Enhanced Inertial Droop Control for Minimal Sensitivity of Grid-Forming Inverter Interface to Dynamic Grid Conditions

语言:

中文摘要

本文提出一种改进的惯性下垂控制框架,用于提升构网型电压源换流器(VSC)在动态电网条件下的鲁棒性。该控制策略通过调节VSC端电压而非公共耦合点电压,优化系统响应。基于全阶线性化模型进行特征值分析,揭示传统控制器在强电网及功率耦合下的失稳机理。所提方法显著增强小信号稳定性,有效抑制强网条件下耦合效应带来的振荡,且对电网参数变化的特征值敏感度极低。时域仿真与硬件在环实验验证了其在不同电网强度和耦合场景下的优越性能。

English Abstract

This paper proposes a control framework for a grid-forming (GFM) voltage source converter (VSC) to ensure resilient dynamic grid interface. The proposed control architecture is a modified version of the existing inertial droop control intended to regulate the voltage at the VSC terminal instead of at the point of common coupling (PCC). The study commences with a detailed analysis of the structure of the proposed controller compared to the conventional inertial droop control method. The full-order time-averaged linearized GFM VSC test system models are then constructed. Eigenvalue analysis is employed to investigate the instability of VSC incorporating conventional controllers for higher grid strengths. It is observed that the performance of this controller further deteriorates in the presence of power coupling challenges. Subsequently, the small-signal stability analysis of the linearized system with the proposed controller is conducted, showing its effectiveness in stabilizing the VSC even in strong grids with significant coupling. Eigenvalue sensitivities to variations in grid parameters are found to be negligible. The analytical conclusions are corroborated through numerical simulation results. Experimental findings from the power-hardware-in-the-loop (PHIL) setup further substantiate the efficiency of the proposed over the prevalent GFM power controller in mitigating challenges of varying grid stiffness and coupling.
S

SunView 深度解读

该增强型惯性下垂控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。通过调节VSC端电压而非PCC电压的创新控制策略,可显著提升构网型控制在强电网条件下的鲁棒性,解决传统GFM控制在电网阻抗变化时易失稳的痛点。该方法对电网参数变化敏感度极低的特性,特别适用于阳光电源储能系统在不同电网强度场景下的并网应用,可有效抑制功率耦合引起的振荡问题。建议将该控制框架集成到ST系列产品的GFM控制算法中,增强系统在弱网和强网切换时的适应性,提升储能系统在新型电力系统中的支撑能力和市场竞争力。