← 返回
储能系统技术 储能系统 ★ 5.0

用于应对可再生能源季节性长期波动的氢储能混合三层次优化配置

Hybrid tri-level optimal sizing of hydrogen storage for addressing long-term seasonal fluctuation of RES

作者 Qianwen Hu · Gengfeng Li · Bingkai Huang · Qiming Yang · Siyuan Sun · Zhaohong Bie
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年8月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源 氢能储能 三阶段规划框架 分布式鲁棒优化 自适应鲁棒优化
语言:

中文摘要

受气候条件影响的可变性可再生能源(RES)导致季节性电力供需失衡。氢储能(HES)的合理配置可缓解由负荷变化、气候变异及季节性气象条件引起的长期电力不匹配问题。针对传统单一不确定性集合难以刻画不同季节RES在长期气候影响下的不确定性特征,本文提出一种融合年际长期与季节性波动的混合三层次规划框架,结合分布鲁棒优化(DRO)与自适应鲁棒优化(ARO)。通过范数约束构建典型气候下RES概率分布模糊集,并采用数据驱动DRO处理长期不确定性;基于RES季节性气象特征建立多不确定性集合,利用ARO重构最坏场景下的底层问题。采用改进的列与约束生成算法(C&CG)结合无对偶分解法求解。IEEE 39节点和118节点系统仿真验证了所提框架与算法的有效性。

English Abstract

Time-varying renewable energy sources (RES), influenced by climate conditions, create seasonal power mismatches. Allocation of hydrogen energy storage (HES) can mitigate long-duration seasonal power mismatch caused by load variation, climate variability and seasonal meteorological conditions. However, one single uncertainty set cannot well consider the characteristics of RES uncertainty in different seasons impacted by long-term climate conditions. To address the above challenges and optimally size and allocate HES in power systems, this paper proposes a hybrid tri-level planning framework that integrates RES interannual long-term and seasonal fluctuation, using a combination of distributionally robust optimization (DRO) and adaptive robust optimization (ARO). Specifically, a RES probability distribution ambiguity set under typical climate conditions is constructed using norm constraints, and data-driven DRO is introduced to address RES long-term uncertainty. RES seasonal uncertainty is then adaptively modelled using multiple uncertainty sets based on the seasonal meteorological characteristics of RES, and ARO is proposed to reformulate the lower-level problem for the worstcase scenarios. The proposed framework is solved using the improved column and constraint generation algorithm (C&CG) with duality-free decomposition. Simulations on IEEE 39-bus system and IEEE 118-bus system confirm the effectiveness of the proposed planning framework and solution algorithm.
S

SunView 深度解读

该氢储能混合三层次优化配置技术对阳光电源PowerTitan大型储能系统及ESS集成方案具有重要应用价值。针对可再生能源季节性波动问题,所提出的DRO与ARO融合框架可直接应用于ST系列储能变流器的容量配置优化,特别是在光储氢多能互补场景中,能够精准应对长期气候不确定性与季节性负荷波动。该方法可增强iSolarCloud云平台的智能规划功能,为大型储能项目提供数据驱动的容量优化决策支持,降低过配置成本。混合优化算法对阳光电源构网型GFM控制策略的长周期能量管理具有创新启发,可提升储能系统在跨季节调度中的经济性与鲁棒性,支撑新型电力系统建设。