← 返回
电动汽车驱动
★ 4.0
混合动力与低碳燃料对重型卡车的技术经济与环境影响
Techno-economic and environmental impacts of hybridization and low-carbon fuels on heavy-duty trucks
| 作者 | Kangjie Liu · Zhiyu Han · Junbo Zhang · Ziwei Tang · Haifeng Tang |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 332 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Analyzed energy use TCO and CO2 of trucks with low-carbon fuels and hybridization. |
语言:
中文摘要
摘要 重型卡车在汽车领域中占据了相当大比例的石油消耗和二氧化碳排放。然而,其向低碳可再生能源的转型进程却落后于乘用车。本研究系统评估了多种低碳燃料动力系统及燃料-电力混合系统在重型长途卡车上的性能、能耗、全生命周期成本(TCO)以及油井到车轮(WTW)的二氧化碳排放表现。所考虑的燃料包括液化天然气(LNG)、甲醇、氢气和电能,而评估的混合系统构型则涵盖串联式、并联式和混联式。首先对这些柴油-电力混合系统的结构参数进行了优化,以提升其性能与成本效益。结果表明,混联式设计为最有效的构型,并被进一步应用于其他燃料类型的混合系统中。分析发现,在所有燃料类型下,混合动力卡车在能耗、全生命周期成本和二氧化碳排放方面均持续优于传统发动机驱动的卡车。柴油、液化天然气和甲醇电力混合动力卡车相比纯电动卡车更具成本效益,凸显出混合化是物流运输领域实现节能减碳的关键技术路径。氢内燃机和氢混合动力卡车的全生命周期成本高于基于柴油的系统,而液化天然气和甲醇混合动力卡车则表现出最低的全生命周期成本,揭示了氢气广泛应用所面临的主要经济障碍。油井到车轮的二氧化碳排放水平高度依赖于甲醇和氢气的生产路径。例如,由煤制气途径生产的氢气驱动的卡车,其二氧化碳排放量达到柴油卡车的2.64倍;而利用可再生电力制取的氢气则可将二氧化碳排放降至柴油卡车水平的29.3%。类似地,由煤炭制取的甲醇使二氧化碳排放增加至柴油卡车的3.95倍,而采用工业二氧化碳废气合成甲醇并结合焦炉煤气制氢的方案,则实现了比柴油卡车降低22.8%的二氧化碳排放。这些结果表明,推动重型卡车向甲醇和氢气燃料转型的同时,必须同步推进可持续、低碳化的燃料生产方式,才能最大化其环境效益。
English Abstract
Abstract Heavy-duty trucks account for a significant share of petroleum consumption and CO 2 emissions in the automotive sector. However, their transition to low-carbon renewable energy has lagged behind that of passenger vehicles. This study systematically evaluates the performance, energy consumption, total cost of ownership (TCO), and well-to-wheel (WTW) CO 2 emissions of various low-carbon fuel powertrains and fuel-electric hybrid systems for heavy-duty long-haul trucks. The fuels considered include liquefied natural gas (LNG), methanol, hydrogen, and electricity, while the hybrid systems evaluated are series, parallel, and series–parallel configurations. Design parameters of these diesel-electric hybrid systems were first optimized to achieve improved performance and cost-efficiency. The series–parallel design emerged as the most effective configuration and was subsequently applied to other fuel hybrid systems. The analysis revealed that hybrid trucks consistently outperformed conventional engine trucks in energy consumption, TCO, and CO 2 emissions across all fuel types. Diesel-, LNG- and methanol-electric hybrid trucks were more cost-effective than battery-electric trucks, underscoring hybridization as a pivotal technology for energy savings and emissions reduction in logistics. Hydrogen engine and hydrogen hybrid trucks exhibited higher TCOs compared to diesel-based systems, while LNG and methanol hybrid trucks offered the lowest TCOs, highlighting the economic barriers to widespread hydrogen adoption. The WTW CO 2 emissions were highly dependent on the production pathways of methanol and hydrogen. For instance, trucks fueled by coal gasification-derived hydrogen emitted 2.64 times the CO 2 of diesel trucks, whereas hydrogen produced from renewable electricity reduced CO 2 to just 29.3% of diesel levels. Similarly, coal-derived methanol increased CO 2 emissions by 3.95 times compared to diesel, while methanol synthesized from industrial CO 2 exhausts and hydrogen from coke oven gases achieved a 22.8% reduction. These findings highlight that transitioning heavy-duty trucks to methanol and hydrogen fuels requires a parallel shift toward sustainable, low-carbon fuel production methods to maximize environmental benefits.
S
SunView 深度解读
该研究揭示重卡混合动力与低碳燃料的协同减排路径,对阳光电源充电桩及储能业务具有战略价值。研究证实电池-燃料混合系统优于纯内燃机,验证了阳光电源充电站配套储能系统的市场潜力。氢能与甲醇重卡的TCO分析表明,需通过可再生能源制氢/醇降低全生命周期碳排,这与阳光电源光伏-储能-制氢一体化解决方案高度契合。可基于PowerTitan储能系统开发物流园区微网,集成充电桩与绿电制氢设施,为混合动力重卡提供低碳能源补给,并利用iSolarCloud平台实现能量管理优化,抢占重型运输电气化市场先机。