← 返回
储能系统技术 储能系统 ★ 5.0

强对流天气下静动结合型电池储能系统的规划

Planning of Stationary-Mobile Integrated Battery Energy Storage Systems Under Severe Convective Weather

作者 Qian Wang · Xueguang Zhang · Ying Xu · Zhongkai Yi · Dianguo Xu
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年12月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 极端天气 固定 - 移动集成电池储能系统 配电网脆弱性模型 两阶段自适应分布鲁棒优化 案例研究
语言:

中文摘要

在强对流天气等极端事件下,电力系统的适应性与供电恢复能力至关重要。为此,本文提出一种具备空间灵活性的静动结合型电池储能系统(SMI-BESS)规划新方法,该系统可在静态与移动模式间灵活切换,以应对正常运行与极端天气。考虑强对流天气带来的极端风速、雷击和冰雹等多重威胁,构建了配电网综合脆弱性模型,并采用两类模糊集刻画可再生能源出力与网络故障的不确定性。建立了两阶段自适应分布鲁棒优化(2S-ADRO)模型,实现SMI-BESS的精细化规划。基于中国部分地区气象与电网数据的算例验证了所提方法的有效性。

English Abstract

Under extreme weather events represented by severe convective weather (SCW), the adaptability of power system and service restoration have become paramount. To this end, this paper presents a novel planning method of stationary-mobile integrated battery energy storage system (SMI-BESS) capable of spatial flexibility. This designed system can flexibly switch between stationary and mobile modes to cope with normal operation and extreme weather events. Considering the multitude of threats posed of SCW, such as extreme wind speed, lightning strikes, and hail, a comprehensive fragility model of the distribution network is established to quantify adverse impacts of the extreme event. Uncertainties in renewable energy generation and distribution network failures are characterized using two types of ambiguity sets. A two-stage adaptive distributionally robust optimization (2S-ADRO) model is developed to plan the SMI-BESS in detail, meeting the requirements of mobile energy storage. Finally, case studies are conducted using weather and grid data from some regions in China to validate the effectiveness of the proposed structure and method.
S

SunView 深度解读

该静动结合型储能系统规划技术对阳光电源PowerTitan储能系统和移动储能产品具有重要应用价值。研究提出的两阶段自适应分布鲁棒优化方法可直接应用于ST系列储能变流器的智能调度策略,通过iSolarCloud云平台集成强对流天气预警数据,实现储能系统在固定式与移动式(如充电桩车载储能)间的灵活切换。配电网脆弱性模型可优化PowerTitan在极端天气下的选址与容量配置,提升供电韧性。模糊集不确定性建模方法可增强光储协同系统(SG逆变器+ESS)在风速、雷击等多重威胁下的鲁棒运行能力,为阳光电源开发气候自适应型储能解决方案提供理论支撑。