← 返回
电动汽车驱动 ★ 5.0

确定和维持可再生能源主导电力系统中区域最小惯性的新方法

A Novel Approach to Determine and Maintain Area-Wise Minimum Inertia in Renewable Energy Dominated Power Systems

作者 Pijush Kanti Dhara · Zakir Hussain Rather
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年11月
技术分类 电动汽车驱动
相关度评分 ★★★★★ 5.0 / 5.0
关键词 同步惯性 频率变化率 惯性再分配 同步惯性补偿器 可再生能源电力系统
语言:

中文摘要

随着逆变器型资源在可再生能源富集区域的渗透率上升,同步发电机被快速替代,导致同步惯性空间分布不均。即使系统整体最小惯性得以维持,局部区域仍可能出现频率变化率越限的稳定性问题。为此,本文提出一种确定各区域最小惯性的方法,并通过缩短电气距离实现惯性从高惯性区域向低惯性区域的再分配,利用用于输送冗余可再生能源的绿色走廊作为惯性传输路径。此外,提出一种基于机器学习的同步惯性补偿装置布点方法,以弥补区域惯性不足,并量化所需新增惯性容量。该方法可指导系统运营商确定同步或虚拟惯性的配置位置与规模,确保含高比例可再生能源系统的区域频率安全。所提方法在改进的IEEE-39节点系统中得到验证。

English Abstract

The rapid displacement of synchronous generators by increased penetration of inverter-based resources (IBR) in power system areas that are potentially rich in renewable energy can lead to spatial non-uniform distribution of synchronous inertia. Consequently, even if the overall minimum inertia (MI) of the system is maintained, certain areas may experience stability issues, which would breach grid-code limits for the rate of change of frequency (RoCoF) following a contingency. Given this context, a method to determine the MI that is specific to individual areas is introduced. Additionally, a method for redistributing surplus inertia from high-inertia areas to low inertia areas is introduced by reducing electrical distance between the nodes. This approach utilizes green corridors, which are additional transmission lines that are established to evacuate surplus renewable power to the areas with higher demand and fossil-fueled-based generation, as pathways to transfer inertia. Furthermore, a machine-learning-assisted technique to compensate for shortfall in area-wise MI by placing new synchronous inertia compensators is proposed. Using this method, system operators can identify the location and size of synchronous or virtual inertia that may be required. The amount of additionally required inertia is quantified by the size of synchronous inertia compensators, to uphold area-specific RoCoF in renewable energy-integrated power systems. The proposed methodology is tested and validated in the modified IEEE-39 bus system.
S

SunView 深度解读

该区域惯性配置方法对阳光电源PowerTitan储能系统和VSG控制技术具有重要应用价值。研究提出的惯性空间分布优化策略可指导ST系列储能变流器在电网中的选址与容量配置,通过构网型GFM控制提供虚拟惯性支撑,解决高比例光伏接入导致的局部低惯性问题。基于机器学习的布点方法可集成至iSolarCloud平台,实现储能系统惯性补偿功能的智能规划。该技术为阳光电源开发区域级惯性管理解决方案提供理论依据,提升SG光伏逆变器与ST储能系统协同支撑电网频率稳定的能力,增强新能源场站并网适应性。