← 返回
电动汽车驱动 ★ 4.0

融合动态特性的高比例可再生能源下稳定性约束调度建模框架

Dynamics-Incorporated Modeling Framework for Stability Constrained Scheduling Under High-Penetration of Renewable Energy

作者 Jinning Wang · Fangxing Li · Xin Fang · Hantao Cui · Buxin She · Hang Shuai
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年1月
技术分类 电动汽车驱动
相关度评分 ★★★★ 4.0 / 5.0
关键词 模块化建模框架 可再生能源 电力系统调度 混合符号 - 数值方法 动态仿真
语言:

中文摘要

本文提出一种模块化建模框架,支持高比例可再生能源接入下的融合动态特性电力系统调度。该框架采用改进的混合符号-数值方法,有效衔接设备级与系统级优化模型,简化调度建模流程。其适应性体现在四个方面:通过建模模块实现可扩展的调度模型、基于向量化与稀疏性技术的可伸缩性能、与动态仿真器兼容的潮流数据结构,以及稳态调度与时域动态仿真间的双向数据交互接口。多场景基准测试验证了框架的准确性与可扩展性,案例研究表明其显著提升了调度与动态仿真的协同效率,减少了稳定性约束调度中的模型转换工作量。

English Abstract

In this paper, a modularized modeling framework is designed to enable a dynamics-incorporated power system scheduling under high-penetration of renewable energy. This unique framework incorporates an adapted hybrid symbolic-numeric approach to scheduling models, effectively bridging the gap between device- and system-level optimization models and streamlining the scheduling modeling effort. The adaptability of the proposed framework stems from four key aspects: extensible scheduling formulations through modeling blocks, scalable performance via effective vectorization and sparsity-aware techniques, compatible data structure aligned with dynamic simulators by common power flow data, and interoperable dynamic interface for bi-direction data exchange between steady-state generation scheduling and time-domain dynamic simulation. Through extensive benchmarks with various usage scenarios, the framework's accuracy and scalability are validated. The case studies also demonstrate the efficient interoperation of generation scheduling and dynamics, significantly reducing the modeling conversion work in stability-constrained grid operation towards high-penetration of renewable energy.
S

SunView 深度解读

该动态特性融合调度框架对阳光电源储能与光伏并网产品具有重要应用价值。框架的模块化建模方法可直接应用于PowerTitan储能系统的多机协调调度,通过稳态优化与动态仿真双向交互,优化ST系列储能变流器的功率响应策略。其稳定性约束建模能力可提升SG系列逆变器在高比例新能源场景下的构网型GFM控制性能,特别是在弱电网接入时的暂态稳定裕度评估。向量化计算与稀疏性技术可集成至iSolarCloud平台,实现大规模光储电站的实时调度优化与稳定性预警,减少现场调试工作量,提升系统级控制策略的工程化效率。