← 返回
考虑ENSO事件的高比例可再生能源系统季节性储能容量优化配置
Optimal Capacity Allocation of Seasonal Energy Storage for High-Proportion Renewable Energy System Considering ENSO Events
| 作者 | Jiawei Zhang · Xiaoyan Bian · Yudan Gu · Qibin Zhou · Bo Zhou · Jian Zhao |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年10月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 厄尔尼诺-南方涛动 高比例可再生能源系统 季节性储能 源荷不匹配 最优容量配置 |
语言:
中文摘要
近年来,厄尔尼诺-南方涛动(ENSO)引发的极端天气对高比例可再生能源电力系统造成显著影响,导致源荷间出现季节性电力失衡。为此,本文提出一种考虑ENSO事件的高比例可再生能源系统季节性储能(SES)容量优化配置模型。首先,构建考虑ENSO事件的源荷不匹配评估模型,采用Spearman相关系数分析ENSO指数与源荷数据的相关性,并基于三种共享社会经济路径(SSPs),利用改进的随机森林回归算法(RFRA)以ENSO指数和相关气象指标为输入建立预测模型,进而计算各SSP下的源荷不平衡量;其次,建立以综合成本最小为目标的储能容量优化配置模型;最后,结合某地区实际数据,在三种SSP情景下通过对比不同案例的功率缺额惩罚成本验证了所提模型的有效性。
English Abstract
Recently the extreme weather caused by El Niño-Southern Oscillation (ENSO) events has had a significant impact on the power system with high proportion of renewable energy, resulting in a seasonal electricity disequilibrium between source and load. Therefore, a novel model of optimal capacity allocation of seasonal energy storage (SES) for the High-Proportion Renewable Energy System (HP-RES) considering ENSO events is proposed. Firstly, the assessment model of source-load mismatch considering ENSO events is carried out. Specifically, the Spearman correlation coefficient is used to present the correlation between the ENSO events index and source/load data. And the modified Random Forest Regression Algorithm (RFRA) is applied to build a prediction model with the ENSO events index and related meteorological indicators (RMIs) as input under three Shared Socioeconomic Pathways (SSPs). The source-load mismatch of each SSP is calculated using predicted data by the modified RFRA. Secondly, the optimal capacity allocation model is proposed, the objective function of which is to minimize the comprehensive cost. Finally, the validity of the proposed model is verified by comparing the power gap penalty cost in different cases under three SSPs, based on the practical data of a certain region.
S
SunView 深度解读
该季节性储能容量优化配置技术对阳光电源PowerTitan大型储能系统和ESS集成方案具有重要应用价值。研究提出的考虑ENSO极端气候事件的源荷不匹配评估模型,可直接应用于ST系列储能变流器的容量规划策略,通过Spearman相关性分析和改进随机森林算法预测长周期功率波动,为储能系统EMS能量管理提供气候敏感型调度依据。该方法可优化阳光电源iSolarCloud云平台的预测性维护功能,结合SSP情景分析实现跨季度储能容量动态配置,降低功率缺额惩罚成本,提升高比例新能源并网系统的季节性平衡能力,特别适用于气候波动显著的海外光储项目容量设计。