← 返回
氢能与燃料电池
★ 4.0
基于HFE-7100沸腾冷却的质子交换膜燃料电池温度特性与输出性能实验研究
Experimental study on temperature characteristics and output performance of PEMFCs based on HFE-7100 boiling cooling
| 作者 | Zhihao Sun · Yanyan Li · Guanchen Liao · Xianglong Luo · Yingzong Liang · Jianyong Chen · Zhi Yang · Ying Chen |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 334 卷 |
| 技术分类 | 氢能与燃料电池 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A boiling cooling [test rig](https://www.sciencedirect.com/topics/engineering/test-rig "Learn more about test rig from ScienceDirect's AI-generated Topic Pages") for PEMFCs is developed to measure stack performance. |
语言:
中文摘要
质子交换膜燃料电池(PEMFC)是一种具有前景的清洁能源技术;然而,有效的热管理仍然是一个关键挑战,尤其是在高功率密度下,温度分布不均会严重影响电堆的性能和寿命。沸腾冷却利用冷却剂的相变过程,为提升PEMFC的热管理水平提供了潜在解决方案。尽管该技术前景广阔,但其在燃料电池电堆中的实际应用尚未得到充分探索。本研究旨在通过构建性能测试平台,系统评估在沸腾冷却条件下PEMFC的温度特性和输出性能,以弥补这一研究空白。采用壁面温差(Td)和温度均匀性指数(TUI)来评价温度均匀性,并重点分析冷却剂入口温度和质量流速的影响。通过单变量实验设计,系统地研究了五个关键运行参数——冷却剂入口温度、质量流速、氢气流量、加湿器温度和排气背压——对PEMFC性能的影响。结果表明,沸腾冷却显著改善了温度均匀性,其中1号电池的TUI提升了约47.69%,3号电池提升了58.58%,尤其在高电流密度下效果更为明显。与单相冷却相比,沸腾冷却表现出更优越的热管理能力,能够在更高功率密度下维持稳定的输出性能。此外,在沸腾冷却条件下,电堆的输出功率提高了9.04%。优化运行参数如氢气流量、加湿器温度和排气背压,有助于提高反应效率,并缓解膜脱水和水淹等问题。这些发现验证了沸腾冷却作为PEMFC可靠热管理方案的有效性,同时强调了参数优化对于进一步提升燃料电池性能与可靠性的关键作用。
English Abstract
Abstract Proton exchange membrane fuel cells (PEMFCs) are a promising clean energy technology; however, effective thermal management remains a critical challenge, particularly at high power densities, where temperature imbalances can severely impact stack performance and longevity. Boiling cooling, which utilizes the phase change of the coolant, presents a potential solution to enhance thermal management in PEMFCs. Despite its promise, its practical application in fuel cell stacks has not been fully explored. This study aims to address this gap by developing a performance testing platform to assess the temperature characteristics and output performance of PEMFCs under boiling cooling conditions. Temperature uniformity was evaluated using the wall temperature difference ( T d ) and the temperature uniformity index ( TUI ), with a focus on the effects of coolant inlet temperature and mass flux. A univariate experimental design was employed to systematically investigate the impact of five critical operational parameters—coolant inlet temperature, mass flux, hydrogen flow rate, humidifier temperature, and exhaust back pressure—on PEMFC performance. The results demonstrate that boiling cooling significantly improves temperature uniformity, with TUI improvements of approximately 47.69 % for Cell 1 and 58.58 % for Cell 3, especially at high current densities. In comparison to single-phase cooling, boiling cooling exhibited superior thermal management capacity, maintaining stable output at higher power densities. Furthermore, the stack’s power output was improved by 9.04 % under boiling cooling. The optimization of operational parameters, such as hydrogen flow rate, humidifier temperature, and exhaust back pressure, was shown to enhance reaction efficiency and mitigate issues such as membrane dehydration and flooding. These findings validate the effectiveness of boiling cooling as a robust thermal management solution for PEMFCs, highlighting the importance of parameter optimization for further improving fuel cell performance and reliability.
S
SunView 深度解读
该PEMFC沸腾冷却技术对阳光电源氢能战略布局具有重要参考价值。研究中的相变冷却方案可借鉴至大功率PCS功率器件散热,特别是ST系列储能变流器中SiC模块的热管理优化。温度均匀性提升47-58%的成果,可应用于充电桩大功率模块设计,解决功率密度提升带来的局部过热问题。多参数协同优化方法论对iSolarCloud平台的预测性维护算法开发有启发意义,可建立热-电耦合模型提升系统可靠性。建议关注相变冷却技术在氢储能系统集成方向的应用潜力。