← 返回
基于非正交小波变换的实测PMU数据中阶跃变化自动检测方法
Automated Step Change Detection in Real-World PMU Data Addressing Practical Implications
| 作者 | Mohammad MansourLakouraj · Chetan Mishra · Luigi Vanfretti · Jaime De La Ree · Kevin D. Jones · Hanif Livani |
| 期刊 | IEEE Transactions on Power Delivery |
| 出版日期 | 2025年5月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 同步相量测量 阶跃变化检测 非正交离散小波变换 非线性滤波器 自适应多尺度阈值 |
语言:
中文摘要
本文提出一种完全自动化、无监督的同步相量测量数据阶跃变化检测方法,无需先验知识、训练数据或参数调优。该方法采用基于平滑梯度估计的非正交离散小波变换,并设计了一种多尺度小波系数点积非线性滤波器,利用阶跃信号在小波域的宽带特性抑制噪声与振荡干扰,降低误报率。通过多尺度乘积的统计特征构建自适应阈值,有效识别真实阶跃事件。实验验证了该方法在复杂工况下的高准确率、精确率和F1分数,显著优于现有基线检测方法。
English Abstract
This paper introduces a fully automated, unsupervised technique for detecting step changes in synchrophasor measurements, without prior knowledge or learning data features, without applying the complex task of baselining, parameter tuning. Step changes in synchrophasor measurements occur due to shunt switching, controller set point changes, and etc. With increasing grid oscillations from inverter-based resources (IBRs) step changes are vital for tracking grid response and anticipating IBR controller-related oscillations. This study identifies step changes through a nonorthogonal discrete wavelet transform that relies on smoothed gradient estimation. A non-linear filter based on a multiscale point-wise product of wavelet coefficients is proposed, which takes advantage of the broadband feature of step changes within the space of wavelet coefficients. This filter also eliminates unwanted signal elements, thus decreasing the occurrence of false positives. Finally, through the statistical characterization of multi-scale products, we use an adaptive multiscale dependent threshold for detecting steps amidst real-world measurement noise and grid oscillations. Our studies indicate the effectiveness of our method in detecting step changes in synchrophasor data, supported by showcasing real-world case studies and discussing practical applications. Our method also significantly outperforms the relevant baseline detection methods by measuring Accuracy, F1 Score, and Precision under both ambient (noise) and step change conditions.
S
SunView 深度解读
该PMU数据阶跃变化自动检测技术对阳光电源储能与电网侧产品具有重要应用价值。在PowerTitan大型储能系统中,可实时监测电网频率、电压的阶跃突变,为构网型GFM控制策略提供快速故障识别能力,优化一次调频响应速度。其无监督、自适应阈值特性可集成至iSolarCloud智能运维平台,实现分布式光伏电站的电能质量异常检测与预测性维护。多尺度小波滤波算法可应用于ST系列储能变流器的并网同步控制,抑制电网振荡干扰,降低虚拟同步机VSG模式下的误动作率。该方法对提升阳光电源设备在弱电网环境下的稳定性与智能诊断能力具有直接技术借鉴意义。