← 返回
电动汽车驱动
★ 4.0
原位非晶粘结界面促进质子陶瓷燃料电池中的离子传输
In situ amorphous-adhesive interface facilitate ionic transport in protonic ceramic fuel cells
| 作者 | Wenjuan Zhao · Jun Wang · Bin Li · Enyi Hu · Penghui Yao · Faze Wang · Bin Zhu · Peter Lun · Muhammad Imran Asghar |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 334 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | An in situ amorphous-adhesive interface enabled sintering-free superfast [PCFC](https://www.sciencedirect.com/topics/materials-science/ceramic-fuel-cell "Learn more about PCFC from ScienceDirect's AI-generated Topic Pages") is designed. |
语言:
中文摘要
摘要 质子陶瓷燃料电池(PCFCs)是一种具有前景的碳中和发电技术,其利用在稳定的钇掺杂锆酸钡(BZY)电解质中表现出的高质子电导率。然而,由于烧结性能差以及电阻性晶界导致整体质子电导率降低,限制了其实际应用。在本研究中,我们提出了一种基于BZY电解质的免烧结超快质子陶瓷燃料电池(S-PCFC),该电池通过一种非晶粘结界面实现。S-PCFC通过一种简便且可扩展的干压工艺原位制备,避免了传统空气中高温烧结的需求。在电化学运行过程中,氢氧化锂与碳酸锂的熔融混合物被原位嵌入,在晶界处形成非晶粘结界面。该方法实现了创纪录的高功率输出(866 mW·cm−2),并获得了迄今报道的BZY电解质中最高的质子电导率(在520 ℃时达0.257 S·cm−1)。密度泛函理论(DFT)计算表明,质子迁移能垒显著降低,证明原位形成的非晶粘结界面促进了免烧结BZY电解质中的超快质子传导。该S-PCFC为超快质子陶瓷材料的发展开辟了新的可能性。
English Abstract
Abstract Protonic ceramic fuel cells (PCFCs) represent a promising carbon–neutral power-generation technology, leveraging the high proton conductivity demonstrated in stable yttrium-doped barium zirconate (BZY) electrolyte, but their practical application is hindered by poor sinterability and diminished overall proton conductivity caused by resistive grain boundaries. In this work, we present a sintering-free superfast-protonic ceramic fuel cell (S-PCFC) based on BZY electrolyte enabled by an amorphous-adhesive-enabled interface. S-PCFC is fabricated in-situ via a facile and scalable dry-press process, circumventing the need for conventional high-temperature sintering in air. A molten mixture of LiOH and Li 2 CO 3 is in situ embedded during electrochemical operation, forming an amorphous-adhesive interface within grain boundaries. This approach achieves a record-high power output of 866 mW·cm −2 and the highest reported proton conductivity for BZY electrolytes (0.257 S·cm −1 at 520 ℃). Density functional theory (DFT) calculations reveal the reduced migration energy barriers for proton transport, demonstrating that the in-situ formed amorphous-adhesive interface facilitates ultrafast proton conduction within the sintering-free BZY electrolyte. This S-PCFC unlocks new possibilities for superfast-protonic ceramics.
S
SunView 深度解读
该质子陶瓷燃料电池技术通过非晶粘附界面实现超快离子传输,对阳光电源氢能及储能系统具有启发意义。其免烧结工艺和原位界面调控思路可借鉴至电力电子器件封装优化,降低SiC/GaN功率模块的界面热阻。520℃下0.257 S·cm⁻¹的质子电导率突破,为分布式氢燃料电池-储能耦合系统提供新方向,可与ST系列PCS协同构建氢电混合微网方案,提升能量转换效率和系统集成度,支撑碳中和目标实现。