← 返回
储能系统技术 储能系统 ★ 4.0

SKAD:一种基于结构知识引导的输电线路阻尼器异常检测统一框架

SKAD: A Unified Framework Guided by Structural Knowledge for Anomaly Detection of Dampers in Transmission Lines

作者 Jiahao Shi · Jing Chen · Hao Jiang · Xiren Miao · Lin Yang
期刊 IEEE Transactions on Power Delivery
出版日期 2025年4月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 阻尼器 异常检测 SKAD框架 结构点 输电线路
语言:

中文摘要

阻尼器通过吸收输电线路振动能量以抑制导线振幅,但其可能发生内部结构异常(如阻尼头损伤)或外部位置异常(如沿导线滑移),影响减振效果。现有方法多针对单一异常类型,且局部特征提取能力有限。为此,本文提出SKAD,一种基于结构知识引导的统一检测框架,通过四个关键结构点对阻尼器结构特性进行编码,结合HRNet、GAU与SimCC构成的混合网络实现亚像素级定位。通过分析结构点的空间关系与向量特征,SKAD可在结构层面同步检测损伤(基于置信度阈值与向量点积)和滑移(基于深度-平行-距离约束)异常。实验结果表明,该方法在真实数据集上优于基于目标的检测方法,具备更高精度与鲁棒性,为输电线路巡检提供了早期异常预警的新途径,有助于防止导线疲劳与停电事故。

English Abstract

The dampers absorb transmission line vibration energy, reducing the vibration amplitudes of conductors. However, dampers may develop internal structural anomalies (e.g., damage to damper heads) or external positional anomalies (e.g., slippage along the conductor), both of which compromise vibration suppression efficacy. Existing anomaly detection methods focus on single anomaly type and struggle with local feature extraction. To address these limitations, this paper introduces SKAD, a unified framework guided by structural knowledge, to concurrently detect internal and external damper anomalies. SKAD encodes structural properties of dampers through four key structural points, enabling sub-pixel-level localization via a hybrid network (HRNet + GAU + SimCC). By analyzing spatial relationships and vector features of these structural points, SKAD can simultaneously detect anomalies like damage (via confidence thresholds and vector dot products) and slippage (via depth-parallelism-distance constraints) at the structural level. Experiments on a real-world dataset demonstrate SKAD outperforms object-based methods in accuracy and robustness, providing novel transmission line inspection perspectives, ensuring early anomaly detection to prevent conductor fatigue and power outages.
S

SunView 深度解读

该输电线路阻尼器异常检测技术对阳光电源智能运维体系具有重要借鉴价值。其基于结构知识的亚像素级定位方法可迁移至iSolarCloud平台的设备巡检模块,用于光伏支架、储能柜体等关键部件的结构异常检测。SKAD框架中的多类型异常统一检测思路可应用于ST储能系统的预测性维护,通过视觉识别电池模组连接件松动、母排位移等机械故障。其置信度阈值与空间几何约束的融合策略,可增强PowerTitan大型储能电站的无人巡检能力,实现早期故障预警,降低停机风险,提升系统可靠性与运维效率。