← 返回
风电变流技术 地面光伏电站 ★ 5.0

基于多重特征因素的电压暂降频率估计方法

Estimation of Voltage Sag Frequency Based on the Multiple Characteristic Factors

作者 Fangwei Xu · Kai Guo · Chuan Wang · Jing Huang · Bo Zhao · Jian Liu
期刊 IEEE Transactions on Power Delivery
出版日期 2025年6月
技术分类 风电变流技术
技术标签 地面光伏电站
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电压暂降频率 线路特征因素 短路故障 估算方法 估算精度
语言:

中文摘要

现有电压暂降频率(VSF)估计方法未充分考虑污秽等级、雷电等级、风区等级和鸟害等级等多种线路特征因素对短路故障的影响,导致估算结果与实际存在较大偏差。实际上,电压暂降主要源于输电线路的瞬时短路故障,而此类故障同时受环境特征因素(如雷电、风区等级)和线路固有特征因素(如线路长度、运行年限)共同影响。为此,本文提出一种融合多特征因素的线路故障模型以提高VSF估计精度。该方法包括三步:首先采用随机森林算法计算线路故障概率,其次基于自适应核密度估计(AKDE)确定故障位置分布,最后利用故障点法估算VSF。通过数值仿真及电网实测数据验证了该方法的有效性与实用性。

English Abstract

The existing methods of estimating voltage sag frequency (VSF) do not adequately consider the influence of multiple line characteristic factors, such as pollution degree, lightning grade, wind zone grade, and bird damage grade, on short-circuit faults. This gap results in significant deviations between estimation results and actual conditions. In practice, voltage sags mainly result from instantaneous short-circuit faults in transmission lines, and these faults are simultaneously influenced by two key factors: 1) environmental characteristic factors, e.g., lightning grade and wind zone grade, and 2) inherent line characteristic factors, e.g., line length and line run time. In view of this gap, this paper proposes a novel method to estimate VSF by introducing the line fault models that incorporates multiple line characteristic factors to enhance the estimation accuracy of VSF. The proposed method involves three main steps: 1) calculate the failure probability of the line by using the random forest prediction algorithm, 2) obtain the distribution of line fault locations based on adaptive kernel density estimation algorithm (AKDE), and 3) estimate VSF with the fault point method. The efficacy and practical utility of the proposed method are rigorously validated via numerical simulations and field data from power grids.
S

SunView 深度解读

该电压暂降频率估计方法对阳光电源的储能和光伏产品线具有重要应用价值。通过融合多重环境特征因素的故障预测模型,可提升ST系列储能变流器和SG系列光伏逆变器的电网适应性。具体应用包括:(1)优化储能PCS的电网故障穿越(LVRT)控制策略;(2)提高光伏逆变器的电网故障预判能力,实现主动防护;(3)为iSolarCloud平台的故障预警和预测性维护提供数据支撑。该方法有助于提升阳光电源产品在复杂电网环境下的可靠性和智能化水平,对产品技术创新具有重要参考价值。