← 返回
一种数据驱动的自适应控制方法以提升VSG在变化电网条件下的动态响应
A Data-Driven Adaptive Control Approach for Enhancing the Dynamic Response of VSGs in Varying Grid Conditions
| 作者 | Shah Fahad · Buxin She · Junjie Yin · Fangxing Li · Hantao Cui · Rui Bo |
| 期刊 | IEEE Transactions on Power Delivery |
| 出版日期 | 2025年4月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 虚拟同步机VSG 弱电网并网 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 虚拟同步发电机 孤岛模式 并网模式 TD3算法 无缝过渡性能 |
语言:
中文摘要
传统虚拟同步发电机(VSG)通常针对孤岛模式(IM)设计,以满足频率变化率(RoCoF)等运行要求,但在并网模式(GCM)下,当电网条件变化时可能无法满足控制性能指标。此外,传统VSG控制未考虑弱电网下预同步方案的影响,导致IM模式下的RoCoF性能下降。为此,本文提出基于双延迟深度确定性策略梯度(TD3)算法的自适应控制方法,以提升VSG在IM与GCM间无缝切换的动态响应性能。首先建立VSG系统模型用于问题建模,进而设计兼顾频率与RoCoF的奖励函数,引导智能体在不同负载、功率指令及电网条件下自主学习优化控制策略。最后通过MATLAB/Simulink与RTDS实时仿真验证了所提方法相较于传统控制的优越性。
English Abstract
Conventionally, a virtual synchronous generator (VSG) is designed for islanded mode (IM) operation to meet specific operational requirements such as the rate of change of frequency (RoCoF). However, the operation of VSG designed for IM may not meet the operational and control criteria in grid connected mode (GCM) when the grid conditions vary. In addition, conventional VSG control technology does not consider the influence of the presynchronization scheme when connected to a weak grid, which degrades the RoCoF in IM. To overcome the aforementioned challenges, the proposed study presents a twin-delayed deep deterministic policy gradient (TD3) algorithm to improve the seamless transition performance of VSG from IM to GCM and vice versa. In the first step, the VSG-based power system model is used as a foundation for problem formulation of the proposed TD3 algorithm. Secondly, a reward function is designed according to the performance requirements, i.e., frequency and RoCoF requirements, of the VSG in order to guide the training of the agent in varying load, power reference, and grid conditions. Finally, the superiority of the proposed algorithm over existing methods is validated in MATLAB/SIMULINK and RTDS based real-time simulation environment.
S
SunView 深度解读
该数据驱动自适应VSG控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。TD3算法可优化现有VSG控制策略,解决弱电网并网与孤岛模式切换时的RoCoF性能劣化问题,提升储能系统在电网强度变化时的动态响应能力。该方法可直接应用于ST系列产品的构网型GFM控制算法升级,通过自适应调节虚拟惯量和阻尼参数,增强系统在不同电网条件下的频率支撑能力。建议将强化学习算法集成到iSolarCloud平台,实现基于实际运行数据的控制参数在线优化,提升阳光电源储能产品在弱电网场景的并网性能和市场竞争力。