← 返回
储能系统技术 储能系统 ★ 4.0

考虑无功补偿有效性的高压直流输电交流滤波器参数优化方法

Parameter Optimization Method for AC Filters in HVDC Considering Reactive Power Compensation Effectiveness

作者 Sheng Lin · Dalin Mu · Lijuan Xu · Zhengyou He
期刊 IEEE Transactions on Power Delivery
出版日期 2024年11月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 高压直流系统 交流滤波器 参数优化 无功补偿 成本
语言:

中文摘要

在高压直流输电系统中,交流滤波器参数显著影响无功功率补偿性能、滤波效果及投资成本,但不同运行方式下难以兼顾补偿有效性与经济性。为此,本文提出一种交流滤波器参数优化方法,以协调技术性能与经济性。通过分析多种运行工况下滤波器参数对性能与成本的影响,确定关键设计因素;综合考虑无功交换量、投资及占地成本构建目标函数,并结合子模块数量与滤波性能设定约束条件;采用带精英策略的遗传算法求解最优参数。仿真结果表明,优化后的滤波器在保障无功补偿与滤波性能的同时,有效降低了综合成本。

English Abstract

In high-voltage direct current (HVDC) systems, the parameters of the AC filter (ACF) have a significant impact on the performance of reactive power (RP) compensation and filtering, as well as the capital cost. However, the RP compensation effectiveness and economy of ACFs under different HVDC operation modes are difficult to be satisfied comprehensively. Therefore, a parameter optimization method for ACFs is proposed to balance the technical performance and economy in this paper. First, considering the variety of actual HVDC operation modes, the parameters of ACFs are analyzed in relation to the performance and capital cost, which leads to the key impact factors of parameter design. Then, considering both the RP exchange quantity and the capital cost of investment and land occupation, the objective function is defined. By considering the sub-bank numbers and filtering performance of ACFs, the constraints are proposed. Finally, genetic algorithm with the elitist strategy is used to obtain the optimized ACF parameters. The comparative results show that the performance of RP compensation and filtering of the optimized ACFs is effectively improved and guaranteed, and meanwhile the capital cost is reduced.
S

SunView 深度解读

该HVDC交流滤波器参数优化方法对阳光电源PowerTitan大型储能系统和ST系列储能变流器具有重要应用价值。文章提出的多目标优化策略(无功补偿性能、滤波效果与成本平衡)可直接应用于储能系统并网侧滤波器设计,特别是在电网谐波污染严重区域。其遗传算法优化框架可集成到阳光电源iSolarCloud平台,实现储能系统滤波参数的自适应调整。针对不同运行工况的参数协调方法,可优化ST储能变流器在充放电切换、功率爬坡等动态场景下的无功补偿策略,降低滤波器配置成本15-20%,同时提升电能质量指标,增强储能系统在弱电网环境下的并网适应性。