← 返回
电动汽车驱动
★ 4.0
HRGA-Net:用于无人机图像中精确绝缘子检测的层次化旋转高斯注意力网络
HRGA-Net: Hierarchical Rotation Gaussian Attention Network for Accurate Insulator Detection from UAV Images
| 作者 | Yong Liao · Chengfeng Peng · Xiang Li · Xu Wang · Yinqiang Deng |
| 期刊 | IEEE Transactions on Power Delivery |
| 出版日期 | 2025年7月 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 绝缘子检测 HRGA - Net RGCA模块 MRGA模块 电力系统运行 |
语言:
中文摘要
绝缘子检测对电力系统运行至关重要,但复杂环境遮挡和背景变化大等问题增加了检测难度。为此,本文提出层次化旋转高斯注意力网络(HRGA-Net),通过旋转高斯卷积注意力(RGCA)模块激发通道依赖性并学习高斯邻域内的多视角空间分布信息,以抑制复杂背景干扰;进一步设计多极化旋转高斯注意力(MRGA)模块,融合多尺度卷积层中的多视角细节,实现多尺度绝缘子检测。在SFID、UPID、CPLID和IDID数据集上的实验表明,该方法mAP@.5分别达到99.33%、99.28%、96.53%和97.27%,显著提升了检测精度。
English Abstract
Insulator detection plays a critical role in the power system operation. However, it is challenging to perform insulator detection because of the following issues: (1) The insulator is always masked by complex environments, e.g., fog and forest; (2) The insulator varies greatly in the background. To solve such problems, a Hierarchical Rotation Gaussian Attention Network (HRGA-Net) is proposed for insulator detection, where the Rotation Gaussian Convolution Attention (RGCA) module is devised to distinguish the insulator from the complicated environments by exciting the effective channel dependencies and learning the multi-view spatial distribution information around the Gaussian neighborhood; then, the Multipolar Rotation Gaussian Attention (MRGA) module is devised to detect the multi-scale insulators from the aerial photographs by capturing different-scale and multi-view details from hierarchical convolutional layers. Experiments conducted on the benchmarks show that the proposed HRGA-Net can achieve excellent performance with the mAP@.5 of 99.33%, 99.28%, 96.53%, and 97.27% on SFID, UPID, CPLID, and IDID datasets, respectively, further assisting in the power system operation.
S
SunView 深度解读
该HRGA-Net绝缘子检测技术对阳光电源智能运维体系具有重要应用价值。在光伏电站和储能系统的巡检维护中,可集成至无人机巡检方案,实现对高压绝缘子的自动化精准检测,mAP@.5达99.33%的高精度可显著降低漏检率。其旋转高斯注意力机制能有效应对复杂光照和背景干扰,适配iSolarCloud云平台的智能诊断模块,实现预测性维护。该技术可扩展至SG光伏逆变器和ST储能系统的电气设备巡检,通过多尺度检测识别绝缘子缺陷、裂纹等早期故障,提升系统可靠性,降低运维成本,为大型地面电站和PowerTitan储能项目提供智能化运维支撑。