← 返回
电动汽车驱动
★ 5.0
基于混合数据集的配电系统故障定位
Distribution Systems Fault Location Identification Using Mixed Datasets
| 作者 | Ali Shakeri Kahnamouei · Saeed Lotfifard |
| 期刊 | IEEE Transactions on Power Delivery |
| 出版日期 | 2025年2月 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 有源配电网 故障定位 概率Petri网 阻抗法 数据集 |
语言:
中文摘要
本文提出一种利用现代配电网中混合数据集进行故障定位的方法,适用于含逆变型分布式电源的主动配电网。该方法融合模拟/录波数据与离散/状态数据,构建基于概率Petri网与反向可达性分析的因果模型,有效识别故障区段,并考虑保护装置失效及故障指示器误报。进一步提出改进的阻抗法,结合微同步相量测量单元或传统量测数据,精确估计故障位置,显式处理数据不确定性。通过IEEE 34节点系统仿真验证了该方法的有效性。
English Abstract
This paper proposes a method for identifying fault locations in active distribution networks equipped with inverter-interfaced distributed generations (IIDGs). The proposed method is capable of utilizing all available mixed datasets of modern distribution networks to improve the performance and precision of the fault location identification results. The dataset may include analog/oscillography data and discrete/status data. A causal model for the faulted system based on probabilistic Petri-Nets and backward reachability analysis is developed that utilizes the collected discrete/status data to determine the faulted section of the system. The model accounts for possible failures of protective devices and false notifications from fault indicators. An enhanced impedance-based fault location identification method is proposed that utilizes analog data from micro-PMUs and/or legacy measuring devices to estimate the exact location of the fault within the identified faulted section. It explicitly accounts for the uncertainties in the collected data. The proposed method's performance is showcased by simulating the IEEE 34-node distribution test system.
S
SunView 深度解读
该混合数据集故障定位技术对阳光电源含逆变器电源的配电系统具有重要应用价值。在ST储能系统和SG光伏逆变器接入的主动配电网中,传统故障定位方法因逆变器限流特性而失效,本文提出的概率Petri网因果模型可融合保护装置状态、故障指示器信号及微同步相量数据,实现故障区段准确识别。改进阻抗法显式处理数据不确定性,适配阳光电源iSolarCloud云平台的智能诊断功能。该技术可增强PowerTitan大型储能系统的故障自诊断能力,提升含高比例新能源配电网的保护可靠性,为阳光电源构网型GFM控制策略下的故障穿越与快速恢复提供技术支撑。