← 返回
利用光伏、光催化和热化学耦合的混合制氢系统实现高效全光谱太阳能收集
Hybrid hydrogen production system utilizing photovoltaics, photocatalysis, and thermochemistry for effective full-spectrum solar energy harvesting
| 作者 | Pei Li · Rujing Yan · Jing Zhang · Mou Wu · Yu He · Tianhao Liu · Jiangjiang Wang |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 336 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel integrated process of solar multi-form [hydrogen production](https://www.sciencedirect.com/topics/engineering/hydrogen-production "Learn more about hydrogen production from ScienceDirect's AI-generated Topic Pages"). |
语言:
中文摘要
摘要 将太阳能转化为氢气为解决太阳能发电的间歇性问题并实现长期能量存储提供了一种有前景的解决方案。然而,当前基于光伏、光催化和热化学过程的制氢方法通常未能充分考虑太阳光谱中不同波段能量品质的差异,从而限制了其能量转换效率。针对这一问题,本文提出一种创新性的高效率制氢方法,通过集成上述三种技术路径,并优化太阳光谱能量的梯级利用。该方法将太阳光按紫外、可见光和红外波段进行分谱,分别驱动光热催化、光伏电解水以及甲醇重整反应,同时结合废热回收以进一步提升系统整体能效。为评估系统性能,建立了全面的运行仿真模型,并构建了用于评价系统热力学性能、环境效益及经济性能的综合评估指标体系。此外,还开展了敏感性分析,以探究关键参数对氢气产率和能量效率的影响规律。结果表明,在额定工况下,该系统的太阳能到氢能转换效率达到40.20%,能量效率为68.01%,㶲效率为57.52%,相较于独立的光电制氢系统,太阳能到氢能的转换效率提升了21%。同时,每生产1千克氢气可减少约14.06千克二氧化碳排放,并节约约5.74千克标准煤。在经济性方面,与参考系统相比,该系统实现了年收入增长率16.62%和年利润增长率34.75%。敏感性分析进一步表明,降低第二分光波长以及提高甲醇重整温度可显著提升氢气生产的效率。本研究为实现太阳全光谱能量的梯级利用以及化石燃料与太阳能协同制氢提供了新的技术路径。
English Abstract
Abstract Converting solar energy into hydrogen offers a promising solution to address the intermittency of solar power and enable long-term energy storage. However, current methods of hydrogen production through photovoltaic, photocatalytic, and thermochemical processes often fail to consider the distinct energy quality across the solar spectrum, limiting their efficiency. In response, this paper presents an innovative, high-efficiency hydrogen production method that integrates these three processes while optimizing the utilization of solar spectrum energy. The method partitions sunlight into ultraviolet, visible, and infrared spectral bands to respectively drive photothermal catalysis, photovoltaic water electrolysis, and methanol reforming, along with the integration of waste heat recovery for enhanced energy efficiency. To evaluate the system performance, a comprehensive operational simulation is developed and assessment indices for the system’s thermodynamic performance, environmental benefits, and economic performance are established. Additionally, a sensitivity analysis is conducted to investigate the impacts of key parameters on the hydrogen production rate and energy efficiency. The results demonstrate that under rated working conditions, the system achieves a solar-to-hydrogen conversion efficiency of 40.20 %, an energy efficiency of 68.01 %, and an exergy efficiency of 57.52 %, which represents a 21 % improvement in solar-to-hydrogen conversion efficiency compared to standalone photoelectric-based hydrogen production systems. In addition, the production of 1 kg of hydrogen reduces carbon dioxide emissions by approximately 14.06 kg and saves around 5.74 kg of standard coal. In economic terms, the proposed system achieves an annual revenue growth rate of 16.62 % and an annual profit growth rate of 34.75 %, compared to the reference system. The sensitivity analysis further reveals that reducing the second separation wavelength and increasing the methanol reforming temperature can significantly enhance hydrogen production efficiency. This research provides a new approach for realizing the cascade utilization of the full solar spectrum and solar synergistic hydrogen production from fossil fuels.
S
SunView 深度解读
该全光谱制氢技术对阳光电源光储氢一体化解决方案具有重要启示。其光伏电解水部分可与SG系列逆变器及ST系列PCS深度耦合,通过MPPT优化提升光电转化效率;系统40.20%的太阳能制氢效率和68.01%的能源效率为我司PowerTitan储能系统与制氢装置的协同设计提供参考;光谱分级利用思路可应用于iSolarCloud平台的智能能量管理算法,实现光伏发电、储能调度与氢能生产的多目标优化控制,推动公司在绿氢制储运一体化领域的技术布局。