← 返回
可靠性与测试 ★ 4.0

用于低质量谐波信号频谱变化检测的均值漂移互能量算子

Mean-Shift Cross Energy Operator for Spectral Change Detection in Low Quality Harmonic Signals

作者 Ravi Yadav · Ashok Kumar Pradhan
期刊 IEEE Transactions on Power Delivery
出版日期 2025年5月
技术分类 可靠性与测试
相关度评分 ★★★★ 4.0 / 5.0
关键词 电能质量监测 谐波变化检测 均值漂移交叉能量算子 时域光谱变化检测 数据质量适应性
语言:

中文摘要

电能质量监测的有效性常受相位误差、坏数据等低质量数据影响,谐波变化检测尤为敏感。为此,本文提出一种具有数据质量自适应能力的均值漂移互能量算子,可在时域实现频谱变化检测。该方法通过消除数据误差影响,量化信号对间的互能量均值差异以表征频谱相似性。作为一种强非线性的双变量能量算子,它扩展了Teager互能量概念至多分量信号,支持时域频谱变化检测并具备高动态灵敏度。在静态信号分析中可有效识别谐波成分或频率变化,不受幅值与相位影响;动态追踪中则同时捕捉谐波结构及幅相变化。方法在Matlab/Simulink中结合多种电能测量数据质量问题进行验证,并利用印度Kharagpur地区配电变压器接地电流实测数据进行了测试。

English Abstract

The efficacy of power quality monitoring is influenced by data quality issues such as phase errors, bad data, etc. Specifically, harmonic change detection suffers with low-quality data and requires adaptive methods. Therefore, this letter proposes a novel mean-shift cross-energy operator for spectral change detection in the time domain with data-quality adaptability. The method quantifies spectral similarity between signal pairs as the mean difference of cross-energy without the influence of data errors. It is a powerful non-linear bivariate energy operator that extends the Teager cross-energy concept to multi-component signals, provides time-domain spectral change detection, and high dynamic sensitivity. For static snapshots of signals, the method is suitable in detecting change in harmonic composition or frequencies, irrespective of amplitude or phase, whereas during dynamic tracking, it captures changes in both the harmonic composition and amplitude/phase. It is tested with multitude of data quality issues in power measurements in Matlab/Simulink and with real-system data for ground current to distribution transformer at Kharagpur, India.
S

SunView 深度解读

该均值漂移互能量算子技术对阳光电源电能质量监测体系具有重要应用价值。在ST储能变流器和SG光伏逆变器并网运行中,可实时检测电网谐波突变与频谱异常,有效应对相位测量误差和坏数据干扰。该方法的时域频谱变化检测能力可集成至iSolarCloud智能运维平台,提升谐波污染源定位精度,优化并网控制策略的自适应性。对于PowerTitan大型储能系统,该算法可增强电能质量扰动预警能力,在低质量测量数据条件下仍保持高灵敏度检测,为构网型GFM控制提供可靠的电网状态感知,提升系统在复杂电网环境下的鲁棒性与并网稳定性。