← 返回
集成液冷与翅片增强相变材料的混合系统在大容量储能电池包中的热管理性能及优化
Thermal management performance and optimization of a hybrid system integrating liquid cooling and fin-enhanced phase change material for large-capacity energy storage battery pack
语言:
中文摘要
摘要 电池储能系统在应对可再生能源间歇性方面正变得日益重要,但其广泛应用仍受到热管理问题的制约。然而,单一的热管理策略难以保障储能电池系统的整体性能。本研究针对280 Ah锂离子电池包,提出了一种结合拓扑翅片结构、相变材料与主动液冷的混合热管理策略。建立了流-热-相变耦合的数值模型,并通过实验验证了其准确性。同时,定义了一种新的综合评价参数,用于表征热管理系统整体性能。基于此,开展了对比研究,评估了三种冷却策略的效率。尽管混合设计带来了额外质量,但拓扑翅片结构不仅在相变材料中构建了高效的导热通路,还通过连接冷板有效消除了积聚的热量。此外,采用单因素分析方法系统地探讨了翅片体积分数、相变材料厚度以及入口流速的影响。进一步地,采用基于代理模型的方法揭示了设计参数与系统性能之间的相互作用关系,并实现了全局优化。与原始设计相比,在放电倍率分别为0.25、0.5、0.75和1C时,综合评价参数分别降低了0.218、0.273、0.256和0.2。
English Abstract
Abstract Battery energy storage systems become increasingly important to address the intermittency of renewable energies, but their widespread adoption is still hindered by thermal concerns. However, a single thermal management strategy cannot ensure the overall performance of energy storage battery systems. In this study, a hybrid strategy combining topological fin structure, phase change material, and active liquid cooling is established for 280 Ah lithium-ion battery pack. A fluidic-thermal-phase change coupled model is built and verified experimentally. Meanwhile, a novel comprehensive evaluation parameter is defined to feature the overall performance of thermal management system. Based on this, comparative investigations are conducted to assess the efficiency of three cooling strategies. Despite additional weight caused by hybrid design, topological fin structure not only constructs the thermal conduction in phase change material but also dissipates the accumulated heat by connecting cold plate. Additionally, the impacts of fin fraction, thickness of phase change material, and inlet velocity are systematically explored using single-factor analysis. Furthermore, a surrogate-based model is utilized to reveal the interactions between design parameters and system performance, while accomplishing a global optimization. In contrast to original design, comprehensive evaluation parameter is reduced by 0.218, 0.273, 0.256, and 0.2 for discharge rates of 0.25, 0.5, 0.75, and 1C, respectively.
S
SunView 深度解读
该混合热管理技术对阳光电源PowerTitan等大容量储能系统具有重要应用价值。研究中的拓扑翅片-相变材料-液冷三重耦合方案,可直接应用于ST系列PCS配套的280Ah电芯模组热管理优化。其综合评价参数降低0.2-0.273的性能提升,为iSolarCloud平台的预测性维护提供热模型支撑。代理模型优化方法可集成到储能系统设计流程,针对不同放电倍率(0.25-1C)实现自适应热管理策略,提升PowerTitan在调峰调频等高倍率应用场景的安全性与循环寿命,降低LCOS全生命周期成本。